These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8260793)

  • 21. Identification of the ferrioxamine B receptor, FoxB, in Escherichia coli K12.
    Nelson M; Carrano CJ; Szaniszlo PJ
    Biometals; 1992; 5(1):37-46. PubMed ID: 1392471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide screen for genes with effects on distinct iron uptake activities in Saccharomyces cerevisiae.
    Lesuisse E; Knight SA; Courel M; Santos R; Camadro JM; Dancis A
    Genetics; 2005 Jan; 169(1):107-22. PubMed ID: 15489514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium.
    Kranzler C; Lis H; Shaked Y; Keren N
    Environ Microbiol; 2011 Nov; 13(11):2990-9. PubMed ID: 21906223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferrioxamine B analogues: targeting the FoxA uptake system in the pathogenic Yersinia enterocolitica.
    Kornreich-Leshem H; Ziv C; Gumienna-Kontecka E; Arad-Yellin R; Chen Y; Elhabiri M; Albrecht-Gary AM; Hadar Y; Shanzer A
    J Am Chem Soc; 2005 Feb; 127(4):1137-45. PubMed ID: 15669853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FoxB of Pseudomonas aeruginosa functions in the utilization of the xenosiderophores ferrichrome, ferrioxamine B, and schizokinen: evidence for transport redundancy at the inner membrane.
    Cuív PO; Keogh D; Clarke P; O'Connell M
    J Bacteriol; 2007 Jan; 189(1):284-7. PubMed ID: 17056746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition.
    Cowart RE
    Arch Biochem Biophys; 2002 Apr; 400(2):273-81. PubMed ID: 12054438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B.
    Cuív PO; Keogh D; Clarke P; O'Connell M
    Mol Microbiol; 2008 Dec; 70(5):1261-73. PubMed ID: 18990190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TonB-independent ferrioxamine B-mediated iron transport in Escherichia coli K12.
    Nelson M; Szaniszlo PJ
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):191-6. PubMed ID: 1478455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Siderophore-mediated iron uptake in Alcaligenes eutrophus CH34 and identification of aleB encoding the ferric iron-alcaligin E receptor.
    Gilis A; Khan MA; Cornelis P; Meyer JM; Mergeay M; van der Lelie D
    J Bacteriol; 1996 Sep; 178(18):5499-507. PubMed ID: 8808942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pseudomonas fluorescens pirates both ferrioxamine and ferricoelichelin siderophores from Streptomyces ambofaciens.
    Galet J; Deveau A; Hôtel L; Frey-Klett P; Leblond P; Aigle B
    Appl Environ Microbiol; 2015 May; 81(9):3132-41. PubMed ID: 25724953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of genes involved in siderophore transport in Streptomyces coelicolor A3(2).
    Bunet R; Brock A; Rexer HU; Takano E
    FEMS Microbiol Lett; 2006 Sep; 262(1):57-64. PubMed ID: 16907739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport and utilization of ferrioxamine-E-bound iron in Erwinia herbicola (Pantoea agglomerans).
    Matzanke BF; Berner I; Bill E; Trautwein AX; Winkelmann G
    Biol Met; 1991; 4(3):181-5. PubMed ID: 1931438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Siderophore utilization and iron uptake by Rhodopseudomonas sphaeroides.
    Moody MD; Dailey HA
    Arch Biochem Biophys; 1984 Oct; 234(1):178-86. PubMed ID: 6237612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A siderophore from a marine bacterium with an exceptional ferric ion affinity constant.
    Reid RT; Live DH; Faulkner DJ; Butler A
    Nature; 1993 Dec; 366(6454):455-8. PubMed ID: 8247152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation pathway and generation of monohydroxamic acids from the trihydroxamate siderophore deferrioxamine B.
    Pierwola A; Krupinski T; Zalupski P; Chiarelli M; Castignetti D
    Appl Environ Microbiol; 2004 Feb; 70(2):831-6. PubMed ID: 14766561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa.
    Llamas MA; Sparrius M; Kloet R; Jiménez CR; Vandenbroucke-Grauls C; Bitter W
    J Bacteriol; 2006 Mar; 188(5):1882-91. PubMed ID: 16484199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perspective on the biotechnological production of bacterial siderophores and their use.
    Soares EV
    Appl Microbiol Biotechnol; 2022 Jun; 106(11):3985-4004. PubMed ID: 35672469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations.
    Arias AA; Lambert S; Martinet L; Adam D; Tenconi E; Hayette MP; Ongena M; Rigali S
    FEMS Microbiol Ecol; 2015 Jul; 91(7):. PubMed ID: 26183915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Fe(III) sequestration by an analog of the cytotoxic siderophore brasilibactin A: implications for the iron transport mechanism in mycobacteria.
    Harrington JM; Park H; Ying Y; Hong J; Crumbliss AL
    Metallomics; 2011 May; 3(5):464-71. PubMed ID: 21442123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trafficking of siderophore transporters in Saccharomyces cerevisiae and intracellular fate of ferrioxamine B conjugates.
    Froissard M; Belgareh-Touzé N; Dias M; Buisson N; Camadro JM; Haguenauer-Tsapis R; Lesuisse E
    Traffic; 2007 Nov; 8(11):1601-16. PubMed ID: 17714436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.