These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8261142)

  • 1. Changes in the mechanical tuning characteristics of the hearing organ following acoustic overstimulation.
    Ulfendahl M; Khanna SM; Löfstrand P
    Eur J Neurosci; 1993 Jun; 5(6):713-23. PubMed ID: 8261142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The vibration pattern of the hearing organ in the waltzing guinea-pig measured using laser heterodyne interferometry.
    Ulfendahl M; Khanna SM; Flock A
    Neuroscience; 1996 May; 72(1):199-212. PubMed ID: 8730717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical tuning characteristics of the hearing organ measured at the sensory cells in the gerbil temporal bone preparation.
    Ulfendahl M; Khanna SM
    Pflugers Arch; 1993 Jul; 424(2):95-104. PubMed ID: 8414906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micromechanical effects in the cochlea of tetracaine.
    Jäger W; Khanna SM; Flock B; Flock A
    Hear Res; 1999 Aug; 134(1-2):179-85. PubMed ID: 10452387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustically induced vibrations of the Reissner's membrane in the guinea-pig inner ear.
    Ulfendahl M; Khanna SM; Decraemer WF
    Acta Physiol Scand; 1996 Nov; 158(3):275-85. PubMed ID: 8931771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical nonlinearity in the apical turn of the guinea pig organ of Corti.
    Hao LF; Khanna SM
    Hear Res; 2000 Oct; 148(1-2):31-46. PubMed ID: 10978823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reticular lamina vibrations in the apical turn of a living guinea pig cochlea.
    Khanna SM; Hao LF
    Hear Res; 1999 Jun; 132(1-2):15-33. PubMed ID: 10392544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of quinine on the cochlear mechanics in the isolated temporal bone preparation.
    Karlsson KK; Ulfendahl M; Khanna SM; Flock A
    Hear Res; 1991 May; 53(1):95-100. PubMed ID: 2066291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical response characteristics of the hearing organ in the low-frequency regions of the cochlea.
    Ulfendahl M; Khanna SM; Fridberger A; Flock A; Flock B; Jäger W
    J Neurophysiol; 1996 Dec; 76(6):3850-62. PubMed ID: 8985883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between Passive and Active Vibrations in the Organ of Corti In Vitro.
    Jabeen T; Holt JC; Becker JR; Nam JH
    Biophys J; 2020 Jul; 119(2):314-325. PubMed ID: 32579963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Static length changes of cochlear outer hair cells can tune low-frequency hearing.
    Ciganović N; Warren RL; Keçeli B; Jacob S; Fridberger A; Reichenbach T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound-evoked radial strain in the hearing organ.
    Tomo I; Boutet de Monvel J; Fridberger A
    Biophys J; 2007 Nov; 93(9):3279-84. PubMed ID: 17604314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-specific position shift in the guinea pig organ of Corti.
    Brundin L; Flock A; Khanna SM; Ulfendahl M
    Neurosci Lett; 1991 Jul; 128(1):77-80. PubMed ID: 1922951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of opening and resealing the cochlea on the mechanical response in the isolated temporal bone preparation.
    Ulfendahl M; Khanna SM; Flock A
    Hear Res; 1991 Dec; 57(1):31-7. PubMed ID: 1774209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ.
    Fridberger A; Flock A; Ulfendahl M; Flock B
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7127-32. PubMed ID: 9618550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sound-induced displacement responses in the plane of the organ of Corti in the isolated guinea-pig cochlea.
    Morioka I; Reuter G; Reiss P; Gummer AW; Hemmert W; Zenner HP
    Hear Res; 1995 Mar; 83(1-2):142-50. PubMed ID: 7607980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filtering of acoustic signals within the hearing organ.
    Ramamoorthy S; Zha D; Chen F; Jacques SL; Wang R; Choudhury N; Nuttall AL; Fridberger A
    J Neurosci; 2014 Jul; 34(27):9051-8. PubMed ID: 24990925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro model for acoustic overstimulation.
    Fridberger A; van Maarseveen JT; Ulfendahl M
    Acta Otolaryngol; 1998 Jun; 118(3):352-61. PubMed ID: 9655209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Normal structure of stereocilia and recovery from ciliary damage in the organ of Corti after acoustic overstimulation].
    Nikaido M
    Nihon Jibiinkoka Gakkai Kaiho; 1992 Feb; 95(2):224-38. PubMed ID: 1560308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.