These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 8261248)

  • 1. The estimation of the basic reproduction number for infectious diseases.
    Dietz K
    Stat Methods Med Res; 1993; 2(1):23-41. PubMed ID: 8261248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidemic models for complex networks with demographics.
    Jin Z; Sun G; Zhu H
    Math Biosci Eng; 2014 Dec; 11(6):1295-317. PubMed ID: 25365609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The basic reproduction number and the probability of extinction for a dynamic epidemic model.
    Neal P
    Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemic thresholds in dynamic contact networks.
    Volz E; Meyers LA
    J R Soc Interface; 2009 Mar; 6(32):233-41. PubMed ID: 18664429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially-implicit modelling of disease-behaviour interactions in the context of non-pharmaceutical interventions.
    Ringa N; Bauch CT
    Math Biosci Eng; 2018 Apr; 15(2):461-483. PubMed ID: 29161845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An SIS patch model with variable transmission coefficients.
    Gao D; Ruan S
    Math Biosci; 2011 Aug; 232(2):110-5. PubMed ID: 21619886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproduction numbers for epidemic models with households and other social structures II: Comparisons and implications for vaccination.
    Ball F; Pellis L; Trapman P
    Math Biosci; 2016 Apr; 274():108-39. PubMed ID: 26845663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter estimation and uncertainty quantification for an epidemic model.
    Capaldi A; Behrend S; Berman B; Smith J; Wright J; Lloyd AL
    Math Biosci Eng; 2012 Jul; 9(3):553-76. PubMed ID: 22881026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The probability of epidemic fade-out is non-monotonic in transmission rate for the Markovian SIR model with demography.
    Ballard PG; Bean NG; Ross JV
    J Theor Biol; 2016 Mar; 393():170-8. PubMed ID: 26796227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidemics and vaccination on weighted graphs.
    Deijfen M
    Math Biosci; 2011 Jul; 232(1):57-65. PubMed ID: 21536052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact rate calculation for a basic epidemic model.
    Rhodes CJ; Anderson RM
    Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of basic reproduction numbers: individual heterogeneity and robustness to perturbation of the contact function.
    Farrington CP; Unkel S; Anaya-Izquierdo K
    Biostatistics; 2013 Jul; 14(3):528-40. PubMed ID: 23266419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemic dynamics on semi-directed complex networks.
    Zhang X; Sun GQ; Zhu YX; Ma J; Jin Z
    Math Biosci; 2013 Dec; 246(2):242-51. PubMed ID: 24140877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.
    Tanner MW; Sattenspiel L; Ntaimo L
    Math Biosci; 2008 Oct; 215(2):144-51. PubMed ID: 18700149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete stochastic metapopulation model with arbitrarily distributed infectious period.
    Hernandez-Ceron N; Chavez-Casillas JA; Feng Z
    Math Biosci; 2015 Mar; 261():74-82. PubMed ID: 25550286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study on mathematical modelling of an infectious disease with application of optimal control.
    Kar TK; Jana S
    Biosystems; 2013 Jan; 111(1):37-50. PubMed ID: 23127788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.