These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 8261591)

  • 21. Effects of pulsatile flow on cultured vascular endothelial cell morphology.
    Helmlinger G; Geiger RV; Schreck S; Nerem RM
    J Biomech Eng; 1991 May; 113(2):123-31. PubMed ID: 1875686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton.
    Galbraith CG; Skalak R; Chien S
    Cell Motil Cytoskeleton; 1998; 40(4):317-30. PubMed ID: 9712262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress.
    Grabowski EF; Jaffe EA; Weksler BB
    J Lab Clin Med; 1985 Jan; 105(1):36-43. PubMed ID: 3918129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress.
    Thoumine O; Nerem RM; Girard PR
    Lab Invest; 1995 Oct; 73(4):565-76. PubMed ID: 7474929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation.
    Truskey GA; Barber KM; Robey TC; Olivier LA; Combs MP
    J Biomech Eng; 1995 May; 117(2):203-10. PubMed ID: 7666657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress.
    Kim DW; Gotlieb AI; Langille BL
    Arteriosclerosis; 1989; 9(4):439-45. PubMed ID: 2751473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.
    Merna N; Wong AK; Barahona V; Llanos P; Kunar B; Palikuqi B; Ginsberg M; Rafii S; Rabbany SY
    Microcirculation; 2018 Jul; 25(5):e12455. PubMed ID: 29665185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The dynamic response of vascular endothelial cells to fluid shear stress.
    Dewey CF; Bussolari SR; Gimbrone MA; Davies PF
    J Biomech Eng; 1981 Aug; 103(3):177-85. PubMed ID: 7278196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of Myoendothelial Gap Junctions in the Regulation of Human Coronary Artery Smooth Muscle Cell Differentiation by Laminar Shear Stress.
    Zhang Z; Chen Y; Zhang T; Guo L; Yang W; Zhang J; Wang C
    Cell Physiol Biochem; 2016; 39(2):423-37. PubMed ID: 27383147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of basal topographic cues and apical shear stress in vascular endothelial cells.
    Morgan JT; Wood JA; Shah NM; Hughbanks ML; Russell P; Barakat AI; Murphy CJ
    Biomaterials; 2012 Jun; 33(16):4126-35. PubMed ID: 22417618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological responses of single endothelial cells exposed to physiological levels of fluid shear stress.
    Masuda M; Fujiwara K
    Front Med Biol Eng; 1993; 5(2):79-87. PubMed ID: 8241033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.
    Avari H; Savory E; Rogers KA
    Cardiovasc Eng Technol; 2016 Mar; 7(1):44-57. PubMed ID: 26621672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of shear stress on the gene expressions of endothelial nitric oxide synthase, endothelin-1, and thrombomodulin in human retinal microvascular endothelial cells.
    Ishibazawa A; Nagaoka T; Takahashi T; Yamamoto K; Kamiya A; Ando J; Yoshida A
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8496-504. PubMed ID: 21896842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytoskeletal response of microvessel endothelial cells to an applied stress force at the submicrometer scale studied by atomic force microscopy.
    Ma W; Sun Y; Han D; Chu W; Lin D; Chen D
    Microsc Res Tech; 2006 Oct; 69(10):784-93. PubMed ID: 16892194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells.
    Davies PF; Dewey CF; Bussolari SR; Gordon EJ; Gimbrone MA
    J Clin Invest; 1984 Apr; 73(4):1121-9. PubMed ID: 6707208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential relation between cytoskeleton reorganization and e-NOS activity in sheared endothelial cells (Effect of rate and time of exposure).
    Kadi A; de Isla N; Lacolley P; Stoltz JF; Menu P
    Clin Hemorheol Microcirc; 2007; 37(1-2):131-40. PubMed ID: 17641403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase.
    De Keulenaer GW; Chappell DC; Ishizaka N; Nerem RM; Alexander RW; Griendling KK
    Circ Res; 1998 Jun; 82(10):1094-101. PubMed ID: 9622162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytosolic alkalinization of vascular endothelial cells produced by an abrupt reduction in fluid shear stress.
    Ziegelstein RC; Blank PS; Cheng L; Capogrossi MC
    Circ Res; 1998 Apr; 82(7):803-9. PubMed ID: 9562440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vascular endothelial cells minimize the total force on their nuclei.
    Hazel AL; Pedley TJ
    Biophys J; 2000 Jan; 78(1):47-54. PubMed ID: 10620272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress.
    Wechezak AR; Viggers RF; Sauvage LR
    Lab Invest; 1985 Dec; 53(6):639-47. PubMed ID: 4068668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.