These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8262532)

  • 41. A method to determine the presence of averaged event-related fields using randomization tests.
    Koenig T; Melie-García L
    Brain Topogr; 2010 Sep; 23(3):233-42. PubMed ID: 20376546
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A non-linear method for estimating the alpha generators from an EEG over the scalp.
    Wang G; Takigawa M
    Front Med Biol Eng; 1992; 4(3):169-78. PubMed ID: 1419916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Full comprehension of the functional organization of the human brain. Preface.
    Maraviglia B
    Magn Reson Imaging; 2009 Oct; 27(8):1009-10. PubMed ID: 19699599
    [No Abstract]   [Full Text] [Related]  

  • 44. Computational representation of a realistic head and brain volume conductor model: electroencephalography simulation and visualization study.
    Kybartaite A
    Int J Numer Method Biomed Eng; 2012 Nov; 28(11):1144-55. PubMed ID: 23109383
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional brain imaging: dipole localization and Laplacian methods.
    Srebro R; Oguz RM; Hughlett K; Purdy PD
    Vision Res; 1993 Dec; 33(17):2413-9. PubMed ID: 8249319
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intracerebral and scalp fields evoked by hemiretinal checkerboard reversal, and modeling of their dipole generators.
    Lehmann D; Darcey TM; Skrandies W
    Adv Neurol; 1982; 32():41-8. PubMed ID: 7054964
    [No Abstract]   [Full Text] [Related]  

  • 47. Principles for transformation of scalp EEG from potential field into source distribution.
    Hjorth B
    J Clin Neurophysiol; 1991 Oct; 8(4):391-6. PubMed ID: 1761705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Topographic mapping of electric activity of the brain].
    Saunte C; Oygarden J; Sand T
    Tidsskr Nor Laegeforen; 1992 Mar; 112(9):1174-7. PubMed ID: 1579941
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cerebral magnetic fields.
    Hari R; Ilmoniemi RJ
    Crit Rev Biomed Eng; 1986; 14(2):93-126. PubMed ID: 3527557
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correlation between skull thickness asymmetry and scalp potential estimated by a numerical model of the head.
    Eshel Y; Witman S; Rosenfeld M; Abboud S
    IEEE Trans Biomed Eng; 1995 Mar; 42(3):242-9. PubMed ID: 7698779
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical tests of a method for simulating electrical potentials on the cortical surface.
    Kearfott RB; Sidman RD; Major DJ; Hill CD
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):294-9. PubMed ID: 2066144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A high resolution EEG method based on the correction of the surface Laplacian estimate for the subject's variable scalp thickness.
    Babiloni F; Babiloni C; Carducci F; Del Gaudio M; Onorati P; Urbano A
    Electroencephalogr Clin Neurophysiol; 1997 Oct; 103(4):486-92. PubMed ID: 9368493
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A parametric method of identification of single-trial event-related potentials in the brain.
    Cerutti S; Chiarenza G; Liberati D; Mascellani P; Pavesi G
    IEEE Trans Biomed Eng; 1988 Sep; 35(9):701-11. PubMed ID: 3169822
    [No Abstract]   [Full Text] [Related]  

  • 54. Estimating cortical potentials from scalp EEG's in a realistically shaped inhomogeneous head model by means of the boundary element method.
    He B; Wang Y; Wu D
    IEEE Trans Biomed Eng; 1999 Oct; 46(10):1264-8. PubMed ID: 10513133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of a priori information in estimating tissue resistivities--application to human data in vivo.
    Baysal U; Haueisen J
    Physiol Meas; 2004 Jun; 25(3):737-48. PubMed ID: 15253124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical analysis of recurrence plots to detect effect of environmental-strength magnetic fields on human brain electrical activity.
    Carrubba S; Frilot C; Chesson AL; Marino AA
    Med Eng Phys; 2010 Oct; 32(8):898-907. PubMed ID: 20634119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model.
    Babiloni F; Babiloni C; Carducci F; Fattorini L; Onorati P; Urbano A
    Electroencephalogr Clin Neurophysiol; 1996 Apr; 98(4):363-73. PubMed ID: 8641156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A method for simulating intracerebral potential fields: the cortical imaging technique.
    Sidman RD
    J Clin Neurophysiol; 1991 Oct; 8(4):432-41. PubMed ID: 1662229
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reference-free identification of components of checkerboard-evoked multichannel potential fields.
    Lehmann D; Skrandies W
    Electroencephalogr Clin Neurophysiol; 1980 Jun; 48(6):609-21. PubMed ID: 6155251
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Brain electrical activity mapping (BEAM): a method for extending the clinical utility of EEG and evoked potential data.
    Duffy FH; Burchfiel JL; Lombroso CT
    Ann Neurol; 1979 Apr; 5(4):309-21. PubMed ID: 443765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.