These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8262535)

  • 1. Stability and movement of a one-link neuromusculoskeletal sagittal arm.
    Dinneen JA; Hemami H
    IEEE Trans Biomed Eng; 1993 Jun; 40(6):541-8. PubMed ID: 8262535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):103-13. PubMed ID: 16154874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of multisensor data fusion in neuromuscular control of a sagittal arm with a pair of muscles using actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Technol Health Care; 2004; 12(6):425-38. PubMed ID: 15671597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of reflexive feedback during arm posture to different environments.
    de Vlugt E; Schouten AC; van der Helm FC
    Biol Cybern; 2002 Jul; 87(1):10-26. PubMed ID: 12111265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement generation with circuits of spiking neurons.
    Joshi P; Maass W
    Neural Comput; 2005 Aug; 17(8):1715-38. PubMed ID: 15969915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic model of the octopus arm. II. Control of reaching movements.
    Yekutieli Y; Sagiv-Zohar R; Hochner B; Flash T
    J Neurophysiol; 2005 Aug; 94(2):1459-68. PubMed ID: 15829593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring peripheral mechanism of tremor on neuromusculoskeletal model: a general simulation study.
    Zhang D; Poignet P; Bo AP; Ang WT
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2359-69. PubMed ID: 19535320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.
    Yekutieli Y; Sagiv-Zohar R; Aharonov R; Engel Y; Hochner B; Flash T
    J Neurophysiol; 2005 Aug; 94(2):1443-58. PubMed ID: 15829594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-assisted adaptive training: custom force fields for teaching movement patterns.
    Patton JL; Mussa-Ivaldi FA
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):636-46. PubMed ID: 15072218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adjustment of the human arm viscoelastic properties to the direction of reaching.
    Frolov AA; Prokopenko RA; Dufossè M; Ouezdou FB
    Biol Cybern; 2006 Feb; 94(2):97-109. PubMed ID: 16344944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance tuning in a neuro-musculo-skeletal model of the forearm.
    Verdaasdonk BW; Koopman HF; Van der Helm FC
    Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic Movement of a Pair of One-Link Arms: Coordination by Intermittent Control.
    Jalics L; Parnianpour M; Barin K; Hemami H
    Comput Methods Biomech Biomed Engin; 1999; 2(1):29-43. PubMed ID: 11264816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices.
    Biess A; Nagurka M; Flash T
    Biol Cybern; 2006 Jul; 95(1):31-53. PubMed ID: 16699783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of location of muscle spindle on the predicted reflex control of muscle length.
    Lord M
    TIT J Life Sci; 1978; 8(1-2):41-6. PubMed ID: 741461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccade adaptation in response to altered arm dynamics.
    Nanayakkara T; Shadmehr R
    J Neurophysiol; 2003 Dec; 90(6):4016-21. PubMed ID: 14665687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new view on visuomotor channels: the case of the disappearing dynamics.
    Neilson PD; Neilson MD
    Hum Mov Sci; 2004 Oct; 23(3-4):257-83. PubMed ID: 15541518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible contributions of CPG activity to the control of rhythmic human arm movement.
    Zehr EP; Carroll TJ; Chua R; Collins DF; Frigon A; Haridas C; Hundza SR; Thompson AK
    Can J Physiol Pharmacol; 2004; 82(8-9):556-68. PubMed ID: 15523513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying proprioceptive reflexes during position control of the human arm.
    Schouten AC; de Vlugt E; van Hilten JJ; van der Helm FC
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):311-21. PubMed ID: 18232375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.