These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 8262645)

  • 1. Inhibition of malaria parasite development in mosquitoes by anti-mosquito-midgut antibodies.
    Lal AA; Schriefer ME; Sacci JB; Goldman IF; Louis-Wileman V; Collins WE; Azad AF
    Infect Immun; 1994 Jan; 62(1):316-8. PubMed ID: 8262645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in Anopheles stephensi (Diptera: Culicidae).
    Suneja A; Gulia M; Gakhar SK
    Arch Insect Biochem Physiol; 2003 Feb; 52(2):63-70. PubMed ID: 12529861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of anti-mosquito antibodies on the infectivity of the rodent malaria parasite Plasmodium berghei to Anopheles farauti.
    Ramasamy MS; Ramasamy R
    Med Vet Entomol; 1990 Apr; 4(2):161-6. PubMed ID: 2132980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of anti-mosquito-midgut antibodies on the development of oocysts of Plasmodium yoelii in Anopheles stephensi].
    Wei QF; Gao XZ
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2000; 18(4):197-9. PubMed ID: 12567656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of anti-mosquito midgut antibodies on development of malaria parasite, Plasmodium vivax and fecundity in vector mosquito Anopheles culicifacies (Diptera: culicidae).
    Chugh M; Adak T; Sehrawat N; Gakhar SK
    Indian J Exp Biol; 2011 Apr; 49(4):245-53. PubMed ID: 21614887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development.
    Lecona-Valera AN; Tao D; Rodríguez MH; López T; Dinglasan RR; Rodríguez MC
    Parasit Vectors; 2016 May; 9(1):274. PubMed ID: 27165123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi.
    Lucantoni L; Yerbanga RS; Lupidi G; Pasqualini L; Esposito F; Habluetzel A
    Malar J; 2010 Mar; 9():66. PubMed ID: 20196858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypic dissection of a Plasmodium-refractory strain of malaria vector Anopheles stephensi: the reduced susceptibility to P. berghei and P. yoelii.
    Shinzawa N; Ishino T; Tachibana M; Tsuboi T; Torii M
    PLoS One; 2013; 8(5):e63753. PubMed ID: 23717475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additional Feeding Reveals Differences in Immune Recognition and Growth of
    Kwon H; Simões ML; Reynolds RA; Dimopoulos G; Smith RC
    mSphere; 2021 Mar; 6(2):. PubMed ID: 33789941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induced immunity against the mosquito Anopheles stephensi (Diptera: Culicidae): effects of cell fraction antigens on survival, fecundity, and plasmodium berghei (Eucoccidiida: Plasmodiidae) transmission.
    Almeida AP; Billingsley PF
    J Med Entomol; 2002 Jan; 39(1):207-14. PubMed ID: 11931258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of midgut microbiota in Anopheles stephensi on Plasmodium berghei infections.
    Kalappa DM; Subramani PA; Basavanna SK; Ghosh SK; Sundaramurthy V; Uragayala S; Tiwari S; Anvikar AR; Valecha N
    Malar J; 2018 Oct; 17(1):385. PubMed ID: 30359252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti.
    Alavi Y; Arai M; Mendoza J; Tufet-Bayona M; Sinha R; Fowler K; Billker O; Franke-Fayard B; Janse CJ; Waters A; Sinden RE
    Int J Parasitol; 2003 Aug; 33(9):933-43. PubMed ID: 12906877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, characterization and transmission blocking potential of midgut carboxypeptidase A in Anopheles stephensi.
    VenkatRao V; Kumar SK; Sridevi P; Muley VY; Chaitanya RK
    Acta Trop; 2017 Apr; 168():21-28. PubMed ID: 28087198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.
    Richman AM; Dimopoulos G; Seeley D; Kafatos FC
    EMBO J; 1997 Oct; 16(20):6114-9. PubMed ID: 9321391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wild Anopheles funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plasmodium berghei.
    Xu J; Hillyer JF; Coulibaly B; Sacko M; Dao A; Niaré O; Riehle MM; Traoré SF; Vernick KD
    PLoS One; 2013; 8(4):e61181. PubMed ID: 23593423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A possible mechanism for the suppression of Plasmodium berghei development in the mosquito Anopheles gambiae by the microsporidian Vavraia culicis.
    Bargielowski I; Koella JC
    PLoS One; 2009; 4(3):e4676. PubMed ID: 19277119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mosquito genes on Plasmodium development.
    Osta MA; Christophides GK; Kafatos FC
    Science; 2004 Mar; 303(5666):2030-2. PubMed ID: 15044804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibodies to Anopheles midgut reduce vector competence for Plasmodium vivax malaria.
    Srikrishnaraj KA; Ramasamy R; Ramasamy MS
    Med Vet Entomol; 1995 Oct; 9(4):353-7. PubMed ID: 8541583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoclonal antibody MG96 completely blocks Plasmodium yoelii development in Anopheles stephensi.
    Dinglasan RR; Fields I; Shahabuddin M; Azad AF; Sacci JB
    Infect Immun; 2003 Dec; 71(12):6995-7001. PubMed ID: 14638789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector.
    Ukegbu CV; Giorgalli M; Tapanelli S; Rona LDP; Jaye A; Wyer C; Angrisano F; Blagborough AM; Christophides GK; Vlachou D
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7363-7373. PubMed ID: 32165544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.