These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 826293)

  • 1. Stabilization of the shape of sickled cells by calcium and A23187.
    Clark MR; Greenquist AC; Shohet SB
    Blood; 1976 Dec; 48(6):899-909. PubMed ID: 826293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of valinomycin, A23187 and repetitive sickling on irreversible sickle cell formation.
    Westerman MP; Allan D
    Br J Haematol; 1983 Mar; 53(3):399-409. PubMed ID: 6402002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-induced damage of haemoglobin SS and normal erythrocytes.
    Eaton JW; Berger E; White JG; Jacob HS
    Br J Haematol; 1978 Jan; 38(1):57-62. PubMed ID: 346046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microvesicles from sickle erythrocytes and their relation to irreversible sickling.
    Allan D; Limbrick AR; Thomas P; Westerman MP
    Br J Haematol; 1981 Mar; 47(3):383-90. PubMed ID: 6779851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of red cell water content on the morphology of sickling.
    Clark MR; Guatelli JC; Mohandas N; Shohet SB
    Blood; 1980 May; 55(5):823-30. PubMed ID: 6767510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of deoxygenation rate on the formation of irreversibly sickled cells.
    Horiuchi K; Ballas SK; Asakura T
    Blood; 1988 Jan; 71(1):46-51. PubMed ID: 3334900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent effects of microsieve aspiration and the ionophore A23187 on the morphologic characteristics of the surface of normal erythrocytes.
    Wells PH; Dreher KL; Burris SM; Krumweide M; White JG
    Am J Clin Pathol; 1980 Jun; 73(6):754-60. PubMed ID: 6772016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the in vitro formation of irreversibly sickled cells by cepharanthine.
    Ohnishi ST
    Br J Haematol; 1983 Dec; 55(4):665-71. PubMed ID: 6671086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium and ionophore A23187 induce the sickle cell membrane phosphorylation pattern in normal erythrocytes.
    Johnson RM; Dzandu JK
    Biochim Biophys Acta; 1982 Nov; 692(2):218-22. PubMed ID: 6816279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinking of the nearest membrane protein neighbors in ATP depleted, calcium enriched and irreversibly sickled red cells.
    Palek J; Liu SC; Liu PA
    Prog Clin Biol Res; 1978; 20():75-91. PubMed ID: 26062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormalities in membrane phospholipid organization in sickled erythrocytes.
    Lubin B; Chiu D; Bastacky J; Roelofsen B; Van Deenen LL
    J Clin Invest; 1981 Jun; 67(6):1643-9. PubMed ID: 7240412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructure of sickling and unsickling in time-lapse studies.
    Hahn JA; Messer MJ; Bradley TB
    Br J Haematol; 1976 Dec; 34(4):559-65. PubMed ID: 990189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partially oxygenated sickled cells: sickle-shaped red cells found in circulating blood of patients with sickle cell disease.
    Asakura T; Mattiello JA; Obata K; Asakura K; Reilly MP; Tomassini N; Schwartz E; Ohene-Frempong K
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12589-93. PubMed ID: 7809083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrendipine, nifedipine and verapamil inhibit the in vitro formation of irreversibly sickled cells.
    Ohnishi ST; Horiuchi KY; Horiuchi K; Jurman ME; Sadanaga KK
    Pharmacology; 1986; 32(5):248-56. PubMed ID: 2940606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood samples collected under venous oxygen pressure from patients with sickle cell disease contain a significant number of a new type of reversibly sickled cells: constancy of the percentage of sickled cells in individual patients during steady state.
    Asakura T; Asakura K; Obata K; Mattiello J; Ballas SK
    Am J Hematol; 2005 Dec; 80(4):249-56. PubMed ID: 16315254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of irreversibly sickled cells in an animal model.
    Castro O; Cochran JD
    J Natl Med Assoc; 1978 Jan; 70(1):23-6. PubMed ID: 702541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells.
    Lux SE; John KM; Karnovsky MJ
    J Clin Invest; 1976 Oct; 58(4):955-63. PubMed ID: 965498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of the mechanical properties of sickle cells by repetitive deoxygenation: role of calcium and the effects of calcium blockers.
    Nash GB; Boghossian S; Parmar J; Dormandy JA; Bevan D
    Br J Haematol; 1989 Jun; 72(2):260-4. PubMed ID: 2757968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irreversibly sickled erythrocytes in sickle cell anemia: a quantitative reappraisal.
    Rodgers GP; Noguchi CT; Schechter AN
    Am J Hematol; 1985 Sep; 20(1):17-23. PubMed ID: 4025318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte calcium abnormalities and the clinical severity of sickling disorders.
    Steinberg MH; Eaton JW; Berger E; Coleman MB; Oelshlegel FJ
    Br J Haematol; 1978 Dec; 40(4):533-39. PubMed ID: 728370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.