These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 8262938)
1. Biochemical analysis of Escherichia coli selenophosphate synthetase mutants. Lysine 20 is essential for catalytic activity and cysteine 17/19 for 8-azido-ATP derivatization. Kim IY; Veres Z; Stadtman TC J Biol Chem; 1993 Dec; 268(36):27020-5. PubMed ID: 8262938 [TBL] [Abstract][Full Text] [Related]
2. Effects of monovalent cations and divalent metal ions on Escherichia coli selenophosphate synthetase. Kim IY; Stadtman TC Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7326-9. PubMed ID: 8041789 [TBL] [Abstract][Full Text] [Related]
3. Escherichia coli mutant SELD enzymes. The cysteine 17 residue is essential for selenophosphate formation from ATP and selenide. Kim IY; Veres Z; Stadtman TC J Biol Chem; 1992 Sep; 267(27):19650-4. PubMed ID: 1527085 [TBL] [Abstract][Full Text] [Related]
4. Selenophosphate synthetase: enzyme labeling studies with [gamma-32P]ATP, [beta-32P]ATP, [8-14C]ATP, and [75Se]selenide. Liu SY; Stadtman TC Arch Biochem Biophys; 1997 May; 341(2):353-9. PubMed ID: 9169026 [TBL] [Abstract][Full Text] [Related]
5. Effects of mutations of conserved Lys-155 and Thr-156 residues in the phosphate-binding glycine-rich sequence of the F1-ATPase beta subunit of Escherichia coli. Omote H; Maeda M; Futai M J Biol Chem; 1992 Oct; 267(29):20571-6. PubMed ID: 1400377 [TBL] [Abstract][Full Text] [Related]
6. Catalytic properties of selenophosphate synthetases: comparison of the selenocysteine-containing enzyme from Haemophilus influenzae with the corresponding cysteine-containing enzyme from Escherichia coli. Lacourciere GM; Stadtman TC Proc Natl Acad Sci U S A; 1999 Jan; 96(1):44-8. PubMed ID: 9874769 [TBL] [Abstract][Full Text] [Related]
7. Identification of the ATP binding domain of recombinant human 40-kDa 2',5'-oligoadenylate synthetase by photoaffinity labeling with 8-azido-[alpha-32P]ATP. Kon N; Suhadolnik RJ J Biol Chem; 1996 Aug; 271(33):19983-90. PubMed ID: 8702715 [TBL] [Abstract][Full Text] [Related]
8. Domains near ATP gamma phosphate in the catalytic site of H+-ATPase. Model proposed from mutagenesis and inhibitor studies. Iwamoto A; Park MY; Maeda M; Futai M J Biol Chem; 1993 Feb; 268(5):3156-60. PubMed ID: 8428992 [TBL] [Abstract][Full Text] [Related]
9. Alteration by site-directed mutagenesis of the conserved lysine residue in the ATP-binding consensus sequence of the RecD subunit of the Escherichia coli RecBCD enzyme. Korangy F; Julin DA J Biol Chem; 1992 Jan; 267(3):1727-32. PubMed ID: 1730715 [TBL] [Abstract][Full Text] [Related]
10. Role of the conserved Lys-X-Gly-Gly sequence at the ADP-glucose-binding site in Escherichia coli glycogen synthase. Furukawa K; Tagaya M; Tanizawa K; Fukui T J Biol Chem; 1993 Nov; 268(32):23837-42. PubMed ID: 8226921 [TBL] [Abstract][Full Text] [Related]
11. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. Low SC; Harney JW; Berry MJ J Biol Chem; 1995 Sep; 270(37):21659-64. PubMed ID: 7665581 [TBL] [Abstract][Full Text] [Related]
12. Spermidine-preferential uptake system in Escherichia coli. ATP hydrolysis by PotA protein and its association with membrane. Kashiwagi K; Endo H; Kobayashi H; Takio K; Igarashi K J Biol Chem; 1995 Oct; 270(43):25377-82. PubMed ID: 7592703 [TBL] [Abstract][Full Text] [Related]
13. Directed mutations of the strongly conserved lysine 155 in the catalytic nucleotide-binding domain of beta-subunit of F1-ATPase from Escherichia coli. Parsonage D; Al-Shawi MK; Senior AE J Biol Chem; 1988 Apr; 263(10):4740-4. PubMed ID: 2895106 [TBL] [Abstract][Full Text] [Related]
14. A non-radioactive and two radioactive assays for selenophosphate synthetase activity. Liu SY; Stadtman TC Biofactors; 1997; 6(3):305-9. PubMed ID: 9288401 [TBL] [Abstract][Full Text] [Related]
15. Structure of selenophosphate synthetase essential for selenium incorporation into proteins and RNAs. Itoh Y; Sekine S; Matsumoto E; Akasaka R; Takemoto C; Shirouzu M; Yokoyama S J Mol Biol; 2009 Feb; 385(5):1456-69. PubMed ID: 18773910 [TBL] [Abstract][Full Text] [Related]
16. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
17. Inhibition and labeling of the coated vesicle V-ATPase by 2-azido-[32P]ATP. Zhang J; Vasilyeva E; Feng Y; Forgac M J Biol Chem; 1995 Jun; 270(26):15494-500. PubMed ID: 7797542 [TBL] [Abstract][Full Text] [Related]
18. Importance of the region around lysine 196 for catalytic activity of adenylyl cyclase from Escherichia coli. Amin N; Peterkofsky A J Biol Chem; 1994 Dec; 269(49):31074-9. PubMed ID: 7983047 [TBL] [Abstract][Full Text] [Related]
19. The nucleotide-binding site of human sphingosine kinase 1. Pitson SM; Moretti PA; Zebol JR; Zareie R; Derian CK; Darrow AL; Qi J; D'Andrea RJ; Bagley CJ; Vadas MA; Wattenberg BW J Biol Chem; 2002 Dec; 277(51):49545-53. PubMed ID: 12393916 [TBL] [Abstract][Full Text] [Related]
20. Differentiation of catalytic sites on Escherichia coli F1ATPase by laser photoactivated labeling with [3H]-2-Azido-ATP using the mutant beta Glu381Cys:epsilonSer108Cys to identify different beta subunits by their interactions with gamma and epsilon subunits. GrĂ¼ber G; Capaldi RA Biochemistry; 1996 Apr; 35(13):3875-9. PubMed ID: 8672416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]