These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A redirected proton pathway in the bacteriorhodopsin mutant Tyr-57-->Asp. Evidence for proton translocation without Schiff base deprotonation. Sonar S; Marti T; Rath P; Fischer W; Coleman M; Nilsson A; Khorana HG; Rothschild KJ J Biol Chem; 1994 Nov; 269(46):28851-8. PubMed ID: 7961844 [TBL] [Abstract][Full Text] [Related]
3. Water structural changes at the proton uptake site (the Thr46-Asp96 domain) in the L intermediate of bacteriorhodopsin. Yamazaki Y; Hatanaka M; Kandori H; Sasaki J; Karstens WF; Raap J; Lugtenburg J; Bizounok M; Herzfeld J; Needleman R Biochemistry; 1995 May; 34(21):7088-93. PubMed ID: 7766618 [TBL] [Abstract][Full Text] [Related]
4. Protein changes associated with reprotonation of the Schiff base in the photocycle of Asp96-->Asn bacteriorhodopsin. The MN intermediate with unprotonated Schiff base but N-like protein structure. Sasaki J; Shichida Y; Lanyi JK; Maeda A J Biol Chem; 1992 Oct; 267(29):20782-6. PubMed ID: 1400394 [TBL] [Abstract][Full Text] [Related]
5. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947 [TBL] [Abstract][Full Text] [Related]
6. Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. Schobert B; Brown LS; Lanyi JK J Mol Biol; 2003 Jul; 330(3):553-70. PubMed ID: 12842471 [TBL] [Abstract][Full Text] [Related]
7. Relocation of internal bound water in bacteriorhodopsin during the photoreaction of M at low temperatures: an FTIR study. Maeda A; Tomson FL; Gennis RB; Kandori H; Ebrey TG; Balashov SP Biochemistry; 2000 Aug; 39(33):10154-62. PubMed ID: 10956004 [TBL] [Abstract][Full Text] [Related]
9. The protonation-deprotonation kinetics of the protonated Schiff base in bicelle bacteriorhodopsin crystals. Sanii LS; Schill AW; Moran CE; El-Sayed MA Biophys J; 2005 Jul; 89(1):444-51. PubMed ID: 15821169 [TBL] [Abstract][Full Text] [Related]
10. Protein conformational changes during the bacteriorhodopsin photocycle. A Fourier transform infrared/resonance Raman study of the alkaline form of the mutant Asp-85-->Asn. Nilsson A; Rath P; Olejnik J; Coleman M; Rothschild KJ J Biol Chem; 1995 Dec; 270(50):29746-51. PubMed ID: 8530365 [TBL] [Abstract][Full Text] [Related]
11. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy. Morgan JE; Vakkasoglu AS; Gennis RB; Maeda A Biochemistry; 2007 Mar; 46(10):2787-96. PubMed ID: 17300175 [TBL] [Abstract][Full Text] [Related]
12. Water-mediated hydrogen-bonded network on the cytoplasmic side of the Schiff base of the L photointermediate of bacteriorhodopsin. Maeda A; Herzfeld J; Belenky M; Needleman R; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2003 Dec; 42(48):14122-9. PubMed ID: 14640679 [TBL] [Abstract][Full Text] [Related]
13. Structural characterization of the L-to-M transition of the bacteriorhodopsin photocycle. Hendrickson FM; Burkard F; Glaeser RM Biophys J; 1998 Sep; 75(3):1446-54. PubMed ID: 9726946 [TBL] [Abstract][Full Text] [Related]
14. Computational analysis of the proton translocation from Asp96 to schiff base in bacteriorhodopsin. Sato Y; Hata M; Neya S; Hoshino T J Phys Chem B; 2006 Nov; 110(45):22804-12. PubMed ID: 17092031 [TBL] [Abstract][Full Text] [Related]
15. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE; Vakkasoglu AS; Lugtenburg J; Gennis RB; Maeda A Biochemistry; 2008 Nov; 47(44):11598-605. PubMed ID: 18837559 [TBL] [Abstract][Full Text] [Related]
16. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K. Maeda A; Tomson FL; Gennis RB; Ebrey TG; Balashov SP Biochemistry; 1999 Jul; 38(27):8800-7. PubMed ID: 10393556 [TBL] [Abstract][Full Text] [Related]
17. Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. Brown LS; Sasaki J; Kandori H; Maeda A; Needleman R; Lanyi JK J Biol Chem; 1995 Nov; 270(45):27122-6. PubMed ID: 7592966 [TBL] [Abstract][Full Text] [Related]
18. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Luecke H Biochim Biophys Acta; 2000 Aug; 1460(1):133-56. PubMed ID: 10984596 [TBL] [Abstract][Full Text] [Related]
19. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate. Maeda A; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2005 Apr; 44(16):5960-8. PubMed ID: 15835885 [TBL] [Abstract][Full Text] [Related]
20. Interaction of aspartate-85 with a water molecule and the protonated Schiff base in the L intermediate of bacteriorhodopsin: a Fourier-transform infrared spectroscopic study. Maeda A; Sasaki J; Yamazaki Y; Needleman R; Lanyi JK Biochemistry; 1994 Feb; 33(7):1713-7. PubMed ID: 8110773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]