These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8262993)

  • 1. Indentation assessment of biphasic mechanical property deficits in size-dependent osteochondral defect repair.
    Hale JE; Rudert MJ; Brown TD
    J Biomech; 1993 Nov; 26(11):1319-25. PubMed ID: 8262993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indentation of an osteochondral repair: sensitivity to experimental variables and boundary conditions.
    Smith CL; Mansour JM
    J Biomech; 2000 Nov; 33(11):1507-11. PubMed ID: 10940411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of aspect ratios on the creep behaviour of articular cartilage in indentation.
    Spoon CE; Wayne JS
    Comput Methods Biomech Biomed Engin; 2004 Feb; 7(1):17-23. PubMed ID: 14965876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model.
    Yang Q; Peng J; Lu SB; Guo QY; Zhao B; Zhang L; Wang AY; Xu WJ; Xia Q; Ma XL; Hu YC; Xu BS
    Chin Med J (Engl); 2011 Dec; 124(23):3930-8. PubMed ID: 22340321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.
    Chen X; Zhou Y; Wang L; Santare MH; Wan LQ; Lu XL
    Ann Biomed Eng; 2016 Apr; 44(4):1148-58. PubMed ID: 26240062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
    Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS
    J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study.
    Mow VC; Gibbs MC; Lai WM; Zhu WB; Athanasiou KA
    J Biomech; 1989; 22(8-9):853-61. PubMed ID: 2613721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study.
    Jackson DW; Lalor PA; Aberman HM; Simon TM
    J Bone Joint Surg Am; 2001 Jan; 83(1):53-64. PubMed ID: 11205859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of osteochondral defect size on cartilage contact stress.
    Brown TD; Pope DF; Hale JE; Buckwalter JA; Brand RA
    J Orthop Res; 1991 Jul; 9(4):559-67. PubMed ID: 2045983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage.
    Athanasiou KA; Rosenwasser MP; Buckwalter JA; Malinin TI; Mow VC
    J Orthop Res; 1991 May; 9(3):330-40. PubMed ID: 2010837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteochondral repair of primate knee femoral and patellar articular surfaces: implications for preventing post-traumatic osteoarthritis.
    Buckwalter JA; Martin JA; Olmstead M; Athanasiou KA; Rosenwasser MP; Mow VC
    Iowa Orthop J; 2003; 23():66-74. PubMed ID: 14575253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The critical size of focal articular cartilage defects is associated with strains in the collagen fibers.
    Heuijerjans A; Wilson W; Ito K; van Donkelaar CC
    Clin Biomech (Bristol); 2017 Dec; 50():40-46. PubMed ID: 28987870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers.
    Ateshian GA; Wang H
    J Biomech; 1995 Nov; 28(11):1341-55. PubMed ID: 8522547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical properties of hip cartilage in experimental animal models.
    Athanasiou KA; Agarwal A; Muffoletto A; Dzida FJ; Constantinides G; Clem M
    Clin Orthop Relat Res; 1995 Jul; (316):254-66. PubMed ID: 7634715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of osteochondral defects on articular cartilage. Contact pressures studied in dog knees.
    Nelson BH; Anderson DD; Brand RA; Brown TD
    Acta Orthop Scand; 1988 Oct; 59(5):574-9. PubMed ID: 3188865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New resource for the computation of cartilage biphasic material properties with the interpolant response surface method.
    Keenan KE; Kourtis LC; Besier TF; Lindsey DP; Gold GE; Delp SL; Beaupre GS
    Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):415-22. PubMed ID: 19675978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation.
    Suh JK; Spilker RL
    J Biomech Eng; 1994 Feb; 116(1):1-9. PubMed ID: 8189703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the effects of knee focal articular surface injury with a patient-specific finite element model.
    Papaioannou G; Demetropoulos CK; King YH
    Knee; 2010 Jan; 17(1):61-8. PubMed ID: 19477131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs.
    Cook SD; Patron LP; Salkeld SL; Rueger DC
    J Bone Joint Surg Am; 2003; 85-A Suppl 3():116-23. PubMed ID: 12925618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.