These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8262993)

  • 21. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel.
    Wakitani S; Goto T; Young RG; Mansour JM; Goldberg VM; Caplan AI
    Tissue Eng; 1998; 4(4):429-44. PubMed ID: 9916174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study.
    Im GI; Ahn JH; Kim SY; Choi BS; Lee SW
    Tissue Eng Part A; 2010 Apr; 16(4):1189-200. PubMed ID: 19883204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medial Femoral Condyle Cartilage Defect Biomechanics: Effect of Obesity, Defect Size, and Cartilage Thickness.
    Lacy KW; Cracchiolo A; Yu S; Goitz H
    Am J Sports Med; 2016 Feb; 44(2):409-16. PubMed ID: 26657570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects.
    Kelly DJ; Prendergast PJ
    J Biomech; 2005 Jul; 38(7):1413-22. PubMed ID: 15922752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: biomechanical results.
    Mayr HO; Klehm J; Schwan S; Hube R; Südkamp NP; Niemeyer P; Salzmann G; von Eisenhardt-Rothe R; Heilmann A; Bohner M; Bernstein A
    Acta Biomater; 2013 Jan; 9(1):4845-55. PubMed ID: 22885682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model.
    Breinan HA; Minas T; Hsu HP; Nehrer S; Sledge CB; Spector M
    J Bone Joint Surg Am; 1997 Oct; 79(10):1439-51. PubMed ID: 9378730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 2000 Feb; 122(1):1-8. PubMed ID: 10790823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitivity of indentation testing to step-off edges and interface integrity in cartilage repair.
    Bae WC; Law AW; Amiel D; Sah RL
    Ann Biomed Eng; 2004 Mar; 32(3):360-9. PubMed ID: 15095810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous bioactive glass matrix in reconstruction of articular osteochondral defects.
    Ylänen HO; Helminen T; Helminen A; Rantakokko J; Karlsson KH; Aro HT
    Ann Chir Gynaecol; 1999; 88(3):237-45. PubMed ID: 10532567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A biphasic model for micro-indentation of a hydrogel-based contact lens.
    Chen X; Dunn AC; Sawyer WG; Sarntinoranont M
    J Biomech Eng; 2007 Apr; 129(2):156-63. PubMed ID: 17408320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of excimer laser on healing of articular cartilage in rabbits.
    Athanasiou KA; Fischer R; Niederauer GG; Puhl W
    J Orthop Res; 1995 Jul; 13(4):483-94. PubMed ID: 7674065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of nonlinear fibre-reinforced biphasic poroviscoelastic constitutive parameters of articular cartilage using stress relaxation indentation testing and an optimizing finite element analysis.
    Seifzadeh A; Oguamanam DC; Trutiak N; Hurtig M; Papini M
    Comput Methods Programs Biomed; 2012 Aug; 107(2):315-26. PubMed ID: 21802762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation into the biphasic properties of a hydrogel for use in a cushion form replacement joint.
    Goldsmith AA; Clift SE
    J Biomech Eng; 1998 Jun; 120(3):362-9. PubMed ID: 10412404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite element analyses of repaired articular surfaces.
    Wayne JS; Woo SL; Kwan MK
    Proc Inst Mech Eng H; 1991; 205(3):155-62. PubMed ID: 1823789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of depth-dependent material properties of biphasic soft tissues through finite element optimization and sensitivity analysis.
    Ün MK; Çalık A
    Med Eng Phys; 2019 Dec; 74():73-81. PubMed ID: 31591078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biphasic indentation of articular cartilage--I. Theoretical analysis.
    Mak AF; Lai WM; Mow VC
    J Biomech; 1987; 20(7):703-14. PubMed ID: 3654668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial and Temporal Mapping of Articular Cartilage Poro-Viscoelastic Material Properties Using Indentation.
    Valluru PKR; Su A; Mehta S; Bajpayee A; Shefelbine S
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36416287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1992 May; 114(2):191-201. PubMed ID: 1602762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasound speed varies in articular cartilage under indentation loading.
    Lötjönen P; Julkunen P; Tiitu V; Jurvelin JS; Töyräs J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2772-80. PubMed ID: 23443716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Biomechanical properties of cartilage repair tissue after different cartilage repair procedures in sheep].
    Russlies M; Rüther P; Köller W; Stomberg P; Behrens P
    Z Orthop Ihre Grenzgeb; 2003; 141(4):465-71. PubMed ID: 12929006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.