These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 8263)
1. An in vitro study of the non-specific esterases of the melon fly, Dacus cucurbitae Coq. and their reactions with organophosphate and carbamate compounds. Ho SH; Sudderluddin KI Comp Biochem Physiol C Comp Pharmacol; 1976; 54(2):95-7. PubMed ID: 8263 [No Abstract] [Full Text] [Related]
2. [Variation in organophosphate and carbamate insecticide resistance in relation to esterase activity in Culex (c.) quinquefasciatus Say, 1823 (Diptera: Culicidae)]. Ortiz Losada E; Bisset Lazcano J; Rodríguez Coto MM; Díaz Pantoja C Rev Cubana Med Trop; 1991; 43(3):171-4. PubMed ID: 9768183 [TBL] [Abstract][Full Text] [Related]
3. Functional Characterization of an α-Esterase Gene Associated with Malathion Detoxification in Tang B; Dai W; Qi L; Du S; Zhang C J Agric Food Chem; 2020 Jun; 68(22):6076-6083. PubMed ID: 32401500 [TBL] [Abstract][Full Text] [Related]
4. Toxicological studies of organophosphate and pyrethroid insecticides for controlling the fruit fly Dacus ciliatus (Diptera: Tephritidae). Maklakov A; Ishaaya I; Freidberg A; Yawetz A; Horowitz AR; Yarom I J Econ Entomol; 2001 Oct; 94(5):1059-66. PubMed ID: 11681666 [TBL] [Abstract][Full Text] [Related]
5. [Esterase patterns in Culex (C.) quinquefasciatus Say, 1823, and its relation to malathion organophosphate insecticide resistance]. Bisset Lazcano J; Berovides V; Rodríguez Coto MM; Díaz Pantoja C Rev Cubana Med Trop; 1991; 43(3):181-5. PubMed ID: 9768186 [TBL] [Abstract][Full Text] [Related]
6. Biochemistry of esterases associated with organophosphate resistance in Lucilia cuprina with comparisons to putative orthologues in other Diptera. Campbell PM; Trott JF; Claudianos C; Smyth KA; Russell RJ; Oakeshott JG Biochem Genet; 1997 Feb; 35(1-2):17-40. PubMed ID: 9238516 [TBL] [Abstract][Full Text] [Related]
7. Digestive enzyme as benchmark for insecticide resistance development in Culex pipiens larvae to chemical and bacteriologic insecticides. Kamel NH; Bahgat IM; El Kady GA J Egypt Soc Parasitol; 2013 Apr; 43(1):245-58. PubMed ID: 23697030 [TBL] [Abstract][Full Text] [Related]
8. An in vitro study of esterases hydrolysing specific substrates of an OP-susceptible and an OP-resistant strain of the green peach aphid, Myzus persicae Sulz. Sudderuddin KI Comp Gen Pharmacol; 1973 Sep; 4(15):219-23. PubMed ID: 4788463 [No Abstract] [Full Text] [Related]
9. Esterases in marine dinoflagellates and resistance to the organophosphate insecticide parathion. Barbier M; Prevot P; Soyer-Gobillard MO Int Microbiol; 2000 Jun; 3(2):117-23. PubMed ID: 11001542 [TBL] [Abstract][Full Text] [Related]
10. Resistance to malathion and deltamethrin in Aedes aegypti (Diptera: Culicidae) from western Venezuela. Alvarez LC; Ponce G; Oviedo M; Lopez B; Flores AE J Med Entomol; 2013 Sep; 50(5):1031-9. PubMed ID: 24180108 [TBL] [Abstract][Full Text] [Related]
11. Degradation of certain organophosphate and carbamate insecticides by human brain esterases. Sakai K; Matsumura F Toxicol Appl Pharmacol; 1971 Aug; 19(4):660-6. PubMed ID: 5132034 [No Abstract] [Full Text] [Related]
12. Overexpression of two α-esterase genes mediates metabolic resistance to malathion in the oriental fruit fly, Bactrocera dorsalis (Hendel). Wang LL; Huang Y; Lu XP; Jiang XZ; Smagghe G; Feng ZJ; Yuan GR; Wei D; Wang JJ Insect Mol Biol; 2015 Aug; 24(4):467-79. PubMed ID: 25940547 [TBL] [Abstract][Full Text] [Related]
13. Mortality and knockdown effects of imidacloprid and methomyl in house fly (Musca domestica L., Diptera: Muscidae) populations. Memmi BK J Vector Ecol; 2010 Jun; 35(1):144-8. PubMed ID: 20618660 [TBL] [Abstract][Full Text] [Related]
14. Partial characterization of soluble esterase from Heterodera glycines and inhibition by aldicarb and phenamiphos. Noel GR; Mayasich SO Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 99(3):537-40. PubMed ID: 1685431 [TBL] [Abstract][Full Text] [Related]
15. Functional characterization of BdB1, a well-conserved carboxylesterase among tephritid fruit flies associated with malathion resistance in Bactrocera dorsalis (Hendel). Wang LL; Lu XP; Smagghe G; Meng LW; Wang JJ Comp Biochem Physiol C Toxicol Pharmacol; 2017 Oct; 200():1-8. PubMed ID: 28697978 [TBL] [Abstract][Full Text] [Related]
16. Field trials of spinosad as a replacement for naled, DDVP, and malathion in methyl eugenol and cue-lure bucket traps to attract and kill male oriental fruit flies and melon flies (Diptera: Tephritidae) in Hawaii. Vargas RI; Miller NW; Stark JD J Econ Entomol; 2003 Dec; 96(6):1780-5. PubMed ID: 14977115 [TBL] [Abstract][Full Text] [Related]
17. Relationship of the acylation of membrane esterases and proteins to the teratogenic action of organophosphorus insecticides and eserine in developing hen eggs. Flockhart IR; Casida JE Biochem Pharmacol; 1972 Oct; 21(19):2591-603. PubMed ID: 4267637 [No Abstract] [Full Text] [Related]
18. Strain specific differences in intraspecific competition in Aedes albopictus (Diptera: Culicidae). Kesavaraju B; Afify A; Gaugler R J Med Entomol; 2012 Sep; 49(5):988-92. PubMed ID: 23025178 [TBL] [Abstract][Full Text] [Related]
19. Acetylcholinesterases from entomopathogenic nematode Heterorhabditid bacteriophora: Susceptibility to insecticides and immunological characteristics. Mohamed MA; M E Mahdy ES; Ghazy AM; Ibrahim NM; El-Mezayen HA; Ghanem MM Pestic Biochem Physiol; 2017 Jan; 135():27-34. PubMed ID: 28043327 [TBL] [Abstract][Full Text] [Related]
20. Impact of environmental temperatures on resistance to organophosphate insecticides in Aedes aegypti from Trinidad. Polson KA; Brogdon WG; Rawlins SC; Chadee DD Rev Panam Salud Publica; 2012 Jul; 32(1):1-8. PubMed ID: 22910718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]