BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8263023)

  • 1. Iron absorption by CaCo 2 cells cultivated in serum-free medium as in vitro model of the human intestinal epithelial barrier.
    Halleux C; Schneider YJ
    J Cell Physiol; 1994 Jan; 158(1):17-28. PubMed ID: 8263023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron absorption by intestinal epithelial cells: 1. CaCo2 cells cultivated in serum-free medium, on polyethyleneterephthalate microporous membranes, as an in vitro model.
    Halleux C; Schneider YJ
    In Vitro Cell Dev Biol; 1991 Apr; 27A(4):293-302. PubMed ID: 1830303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells.
    Han O; Wessling-Resnick M
    Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G527-33. PubMed ID: 11842003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of nickel across monolayers of human intestinal Caco-2 cells.
    Tallkvist J; Tjälve H
    Toxicol Appl Pharmacol; 1998 Jul; 151(1):117-22. PubMed ID: 9705894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase I and II biotransformations in living CaCo 2 cells cultivated under serum-free conditions. Selective apical excretion of reaction products.
    Sergent-Engelen T; Delistrie V; Schneider YJ
    Biochem Pharmacol; 1993 Oct; 46(8):1393-401. PubMed ID: 8240388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure.
    Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A
    Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco-2 cell model.
    Moriya M; Linder MC
    Am J Physiol Gastrointest Liver Physiol; 2006 Feb; 290(2):G301-9. PubMed ID: 16179601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caco-2 cells and Biopharmaceutics Classification System (BCS) for prediction of transepithelial transport of xenobiotics (model drug: caffeine).
    Smetanova L; Stetinova V; Kholova D; Kvetina J; Smetana J; Svoboda Z
    Neuro Endocrinol Lett; 2009; 30 Suppl 1():101-5. PubMed ID: 20027153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H(+)-coupled alpha-methylaminoisobutyric acid transport in human intestinal Caco-2 cells.
    Thwaites DT; McEwan GT; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1995 Mar; 1234(1):111-8. PubMed ID: 7880851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers.
    Nøhr MK; Hansen SH; Brodin B; Holm R; Nielsen CU
    Eur J Pharm Sci; 2014 Jan; 51():1-10. PubMed ID: 24008184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2.
    Yu L; Zeng S
    J Pharm Pharmacol; 2007 May; 59(5):655-60. PubMed ID: 17524230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of apotransferrin on iron release from Caco-2 cells, an intestinal epithelial cell line.
    Alvarez-Hernandez X; Smith M; Glass J
    Blood; 1998 May; 91(10):3974-9. PubMed ID: 9573037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeability characteristics of polyamines across intestinal epithelium using the Caco-2 monolayer system: comparison between transepithelial flux and mitogen-stimulated uptake into epithelial cells.
    Milovic V; Faust D; Turchanowa L; Stein J; Caspary WF
    Nutrition; 2001 Jun; 17(6):462-6. PubMed ID: 11399404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron Imports. V. Transport of iron through the intestinal epithelium.
    Ma Y; Yeh M; Yeh KY; Glass J
    Am J Physiol Gastrointest Liver Physiol; 2006 Mar; 290(3):G417-22. PubMed ID: 16474007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport mechanisms of the large neutral amino acid L-phenylalanine in the human intestinal epithelial caco-2 cell line.
    Berger V; Larondelle Y; Trouet A; Schneider YJ
    J Nutr; 2000 Nov; 130(11):2780-8. PubMed ID: 11053521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Fe absorption by cultured intestinal epithelia (Caco-2) cell monolayers with varied Fe status.
    Tapia V; Arredondo M; Núñez MT
    Am J Physiol; 1996 Sep; 271(3 Pt 1):G443-7. PubMed ID: 8843768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepcidin inhibits apical iron uptake in intestinal cells.
    Mena NP; Esparza A; Tapia V; Valdés P; Núñez MT
    Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G192-8. PubMed ID: 17962361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between ethylenediaminetetraacetic acid (EDTA) and iron absorption pathways, in the Caco-2 model.
    Kibangou IB; Bureau F; Allouche S; Arhan P; Bouglé D
    Food Chem Toxicol; 2008 Nov; 46(11):3414-6. PubMed ID: 18783730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferrous iron uptake but not transfer is down-regulated in Caco-2 cells grown in high iron serum-free medium.
    Gangloff MB; Lai C; Van Campen DR; Miller DD; Norvell WA; Glahn RP
    J Nutr; 1996 Dec; 126(12):3118-27. PubMed ID: 9001382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamine preserves protein synthesis and paracellular permeability in Caco-2 cells submitted to "luminal fasting".
    Le Bacquer O; Laboisse C; Darmaun D
    Am J Physiol Gastrointest Liver Physiol; 2003 Jul; 285(1):G128-36. PubMed ID: 12799310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.