BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8264413)

  • 1. Comparative method in study of protein structure and function: enzyme specificity as an example.
    Stewart CB
    Methods Enzymol; 1993; 224():591-603. PubMed ID: 8264413
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural evolution of an enzyme specificity. The structure of rat carboxypeptidase A2 at 1.9-A resolution.
    Faming Z; Kobe B; Stewart CB; Rutter WJ; Goldsmith EJ
    J Biol Chem; 1991 Dec; 266(36):24606-12. PubMed ID: 1761558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical amino acids responsible for converting specificities of proteins and for enhancing enzyme evolution are located around beta-turn potentials: data-based prediction.
    Murakami M
    J Protein Chem; 1993 Dec; 12(6):783-9. PubMed ID: 8136029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the protein repertoire.
    Chothia C; Gough J; Vogel C; Teichmann SA
    Science; 2003 Jun; 300(5626):1701-3. PubMed ID: 12805536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Editorial: protein design and evolution for biocatalysis.
    Bornscheuer UT
    Biotechnol J; 2007 Feb; 2(2):155. PubMed ID: 17294417
    [No Abstract]   [Full Text] [Related]  

  • 6. The primary structure of carboxypeptidase S3 from Penicillium janthinellum IBT 3991.
    Svendsen I; Day ES
    FEBS Lett; 1995 Aug; 371(1):1-3. PubMed ID: 7664873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence variability of proteins evolutionarily constrained by solution-thermodynamic function.
    Braun FN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011903. PubMed ID: 14995643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of structure-function relationships by formation of chimeric enzymes produced by gene fusion.
    Wales ME; Wild JR
    Methods Enzymol; 1991; 202():687-706. PubMed ID: 1784194
    [No Abstract]   [Full Text] [Related]  

  • 10. Computer analysis of metagenomic data--prediction of quantitative value of specific activity of proteins.
    Ivanisenko VA; Demenkov PS; Pintus SS; Ivanisenko TV; Podkolodny NL; Ivanisenko LN; Rozanov AS; Bryanskaya AV; Kostrjukova ES; Levizkiy SA; Selezneva OV; Chukin MM; Larin AK; Kondratov IG; Lazarev VN; Peltek SE; Govorun VM; Kolchanov NA
    Dokl Biochem Biophys; 2012; 443():76-80. PubMed ID: 22562630
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular cloning, nucleotide sequence, and expression of a carboxypeptidase-encoding gene from the archaebacterium Sulfolobus solfataricus.
    Colombo S; Toietta G; Zecca L; Vanoni M; Tortora P
    J Bacteriol; 1995 Oct; 177(19):5561-6. PubMed ID: 7559343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologous modeling of the lysosomal protective protein/carboxypeptidase L: structural and functional implications of mutations identified in galactosialidosis patients.
    Elsliger MA; Potier M
    Proteins; 1994 Jan; 18(1):81-93. PubMed ID: 8146124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid evolution of bacterial catabolic enzymes: a case study with atrazine chlorohydrolase.
    Seffernick JL; Wackett LP
    Biochemistry; 2001 Oct; 40(43):12747-53. PubMed ID: 11669610
    [No Abstract]   [Full Text] [Related]  

  • 14. Expression and characterization of human pancreatic preprocarboxypeptidase A1 and preprocarboxypeptidase A2.
    Laethem RM; Blumenkopf TA; Cory M; Elwell L; Moxham CP; Ray PH; Walton LM; Smith GK
    Arch Biochem Biophys; 1996 Aug; 332(1):8-18. PubMed ID: 8806703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning of Aplysia neuronal cDNAs that encode carboxypeptidases related to mammalian prohormone processing enzymes.
    Fan X; Nagle GT
    DNA Cell Biol; 1996 Nov; 15(11):937-45. PubMed ID: 8945634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using structure to inform carbohydrate binding module function.
    Abbott DW; van Bueren AL
    Curr Opin Struct Biol; 2014 Oct; 28():32-40. PubMed ID: 25108190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analogous enzymes: independent inventions in enzyme evolution.
    Galperin MY; Walker DR; Koonin EV
    Genome Res; 1998 Aug; 8(8):779-90. PubMed ID: 9724324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of a novel leech carboxypeptidase inhibitor determined free in solution and in complex with human carboxypeptidase A2.
    Reverter D; Fernández-Catalán C; Baumgartner R; Pfänder R; Huber R; Bode W; Vendrell J; Holak TA; Avilés FX
    Nat Struct Biol; 2000 Apr; 7(4):322-8. PubMed ID: 10742178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between the substitution rate and rate variation among sites in protein evolution.
    Zhang J; Gu X
    Genetics; 1998 Jul; 149(3):1615-25. PubMed ID: 9649548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of glycolysis.
    Fothergill-Gilmore LA; Michels PA
    Prog Biophys Mol Biol; 1993; 59(2):105-235. PubMed ID: 8426905
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.