These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 826455)

  • 1. [Mutants of Bacillus subtilis--producer of alkaline proteinase, sporulating in the presence of high concentrations of glucose].
    Dobrzhanskaia EO; Erokhina LI
    Genetika; 1976; 12(7):74-9. PubMed ID: 826455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Nature of the mutations that determine the ability of Bacillus subtilis A-50 to sporulate at high glucose concentrations in the medium].
    Dobrzhanaskaia EO; Erokhina LI; Bol'shakova TN
    Genetika; 1978; 14(7):1175-84. PubMed ID: 97172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Temperature-dependent mutants of Bacillus subtilis A-50 with a diminished level of alkaline proteinase synthesis].
    Dobrzhanskaia EO; Erokhina LI; Abramov ZT
    Genetika; 1976; 12(6):167-70. PubMed ID: 825415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Relationship between spore formation and synthesis of extracellular protheases in Bacillus mesentericus].
    Loriia ZhK; Marchenkova AI; Egorov NS
    Mikrobiologiia; 1977; 46(6):1014-8. PubMed ID: 23485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Regulation of alkaline protease synthesis in Bacillus subtilis A-50].
    Dobrzhanskaia EO; Erokhina LI
    Genetika; 1975; 11(7):135-44. PubMed ID: 815133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electron microscopic study of Bacillus subtilis mutants differing in the serine proteinase activity and spectrum].
    Smirnov TA; Ermakova LM; Makar'eva ED; Minenkova IB; Strongin AIa
    Mikrobiologiia; 1978; 47(4):717-21. PubMed ID: 100670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Role of the ribosomes in controlling cellular differentiation and secondary metabolism in sporulating bacteria. I. Sporogenesis, antibiotic formation and the proteolytic activity of streptomycin-resistant mutants].
    Lukin AA; Korolev VI
    Genetika; 1981; 17(7):1211-9. PubMed ID: 6791987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pleiotropic control mutations affecting the sporulation of Bacillus subtilis.
    Balassa G; Dod B; Jeannoda V; Milhaud P; Zucca J; Sousa JC; Silva MT
    Ann Microbiol (Paris); 1978; 129 B(4):537-49. PubMed ID: 112899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ontogenetic switchover in Bacillus subtilis. II. The dynamics of the stationary phase processes during growth under conditions of catabolite repression].
    Rubikas IP; Sasnauskas KV; Iomantas IuV
    Genetika; 1978; 14(12):2102-12. PubMed ID: 105967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sporulation of bacterial species in the presence of metabisulphite.
    Oloyede OB; Abalaka JA
    Microbios; 1989; 57(230):49-63. PubMed ID: 2500579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of spore and antibiotic markers in revertants from asporogenous and sporogenous non-producer mutants of Bacillus subtilis.
    Ray B; Bose SK
    Acta Microbiol Pol A; 1974; 6(1):101-9. PubMed ID: 4208166
    [No Abstract]   [Full Text] [Related]  

  • 12. [Selection of Bacillus subtilis mutants blocked at the beginning of sporulation. I. Asporogenous pleotrophic mutants selected by growth in a nitrate medium].
    Michel JF; Cami B; Schaeffer P
    Ann Inst Pasteur (Paris); 1968 Jan; 114(1):11-20. PubMed ID: 4967793
    [No Abstract]   [Full Text] [Related]  

  • 13. An easy method for screening and isolating rod mutants of Bacillus subtilis.
    Cheung SH; Lai WP; Ng TW; Lam MW; Cheung HY
    Appl Microbiol Biotechnol; 2004 May; 64(4):551-5. PubMed ID: 14669057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Role of the ribosomes in controlling cell differentiation and secondary metabolism in sporulating bacteria. II. The suppression of the phenotypic expression of ribosomal mutations (strA) as affected by RNA-polymerase mutations (rfm) in Bacillus subtilis].
    Lukin AA; Planutene MV; Rozov AN
    Genetika; 1983 May; 19(5):737-43. PubMed ID: 6409706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protease production during sporulation of germination mutants of Bacillus subtilis and the cloning of a functional gerE gene.
    James W; Mandelstam J
    J Gen Microbiol; 1985 Sep; 131(9):2421-30. PubMed ID: 2999301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of carbon and nitrogen sources and complex B vitamins on the synthesis of alkaline protease by different strains of Bacillus mesentericus and Bacillus subtilis].
    Emtseva TV
    Prikl Biokhim Mikrobiol; 1975; 11(3):391-6. PubMed ID: 813199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Alkaline protease production].
    Daguerre R; Cuevas CM; Mazza LA; Balatti AP
    Rev Asoc Argent Microbiol; 1975; 7(2):49-55. PubMed ID: 813279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Extracellular proteases, growth phases and sporulation in the cultivation of Bacillus mesentericus strain 76].
    Emanuilova E; Kaĭmakchiev A
    Acta Microbiol Bulg; 1981; 8():51-6. PubMed ID: 6803525
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of metabisulphite on sporulation and alkaline phosphatase in Bacillus subtilis and Bacillus cereus.
    Abalaka JA; Oloyede OB
    Microbios; 1990; 63(256-257):173-86. PubMed ID: 2122190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [beta-1,3-1,4-Glucanase in spore-forming microorganisms. I. beta-Glucanase production during the growth cycle of Bacillus subtilis (Marburg Yale)].
    Borriss R
    Z Allg Mikrobiol; 1976; 16(6):475-7. PubMed ID: 824871
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.