These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 8264607)
1. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells. Deng WP; Nickoloff JA Mol Cell Biol; 1994 Jan; 14(1):400-6. PubMed ID: 8264607 [TBL] [Abstract][Full Text] [Related]
2. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches. Bill CA; Duran WA; Miselis NR; Nickoloff JA Genetics; 1998 Aug; 149(4):1935-43. PubMed ID: 9691048 [TBL] [Abstract][Full Text] [Related]
3. Mismatch repair by efficient nick-directed, and less efficient mismatch-specific, mechanisms in homologous recombination intermediates in Chinese hamster ovary cells. Miller EM; Hough HL; Cho JW; Nickoloff JA Genetics; 1997 Oct; 147(2):743-53. PubMed ID: 9335609 [TBL] [Abstract][Full Text] [Related]
4. Molecular structures of crossover and noncrossover intermediates during gap repair in yeast: implications for recombination. Mitchel K; Zhang H; Welz-Voegele C; Jinks-Robertson S Mol Cell; 2010 Apr; 38(2):211-22. PubMed ID: 20417600 [TBL] [Abstract][Full Text] [Related]
5. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination. McDonald JP; Rothstein R Genetics; 1994 Jun; 137(2):393-405. PubMed ID: 8070653 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Li J; Read LR; Baker MD Mol Cell Biol; 2001 Jan; 21(2):501-10. PubMed ID: 11134338 [TBL] [Abstract][Full Text] [Related]
7. Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae. Weng YS; Nickoloff JA Genetics; 1998 Jan; 148(1):59-70. PubMed ID: 9475721 [TBL] [Abstract][Full Text] [Related]
8. Eliminating both canonical and short-patch mismatch repair in Drosophila melanogaster suggests a new meiotic recombination model. Crown KN; McMahan S; Sekelsky J PLoS Genet; 2014 Sep; 10(9):e1004583. PubMed ID: 25188408 [TBL] [Abstract][Full Text] [Related]
10. Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast. Haber JE; Ray BL; Kolb JM; White CI Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3363-7. PubMed ID: 8475081 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic Insight into Crossing over during Mouse Meiosis. Peterson SE; Keeney S; Jasin M Mol Cell; 2020 Jun; 78(6):1252-1263.e3. PubMed ID: 32362315 [TBL] [Abstract][Full Text] [Related]
12. Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Chen W; Jinks-Robertson S Mol Cell Biol; 1998 Nov; 18(11):6525-37. PubMed ID: 9774668 [TBL] [Abstract][Full Text] [Related]
13. Repair bias of large loop mismatches during recombination in mammalian cells depends on loop length and structure. Bill CA; Taghian DG; Duran WA; Nickoloff JA Mutat Res; 2001 Apr; 485(3):255-65. PubMed ID: 11267836 [TBL] [Abstract][Full Text] [Related]
14. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Sargent RG; Meservy JL; Perkins BD; Kilburn AE; Intody Z; Adair GM; Nairn RS; Wilson JH Nucleic Acids Res; 2000 Oct; 28(19):3771-8. PubMed ID: 11000269 [TBL] [Abstract][Full Text] [Related]
15. Gene conversion at the gray locus of Sordaria fimicola: fit of the experimental data to a hybrid DNA model of recombination. Kalogeropoulos A; Thuriaux P Genetics; 1985 Mar; 109(3):599-610. PubMed ID: 3979816 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells. Kim PM; Allen C; Wagener BM; Shen Z; Nickoloff JA Nucleic Acids Res; 2001 Nov; 29(21):4352-60. PubMed ID: 11691922 [TBL] [Abstract][Full Text] [Related]
17. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Sugawara N; Goldfarb T; Studamire B; Alani E; Haber JE Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9315-20. PubMed ID: 15199178 [TBL] [Abstract][Full Text] [Related]
18. Formation and repair of heteroduplex DNA on both sides of the double-strand break during mammalian gene targeting. Li J; Baker MD J Mol Biol; 2000 Jan; 295(3):505-16. PubMed ID: 10623542 [TBL] [Abstract][Full Text] [Related]
19. Conversion-type and restoration-type repair of DNA mismatches formed during meiotic recombination in Saccharomyces cerevisiae. Kirkpatrick DT; Dominska M; Petes TD Genetics; 1998 Aug; 149(4):1693-705. PubMed ID: 9691029 [TBL] [Abstract][Full Text] [Related]
20. Distinct roles for the Saccharomyces cerevisiae mismatch repair proteins in heteroduplex rejection, mismatch repair and nonhomologous tail removal. Goldfarb T; Alani E Genetics; 2005 Feb; 169(2):563-74. PubMed ID: 15489516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]