These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 8264767)
1. Effect of glucose starvation on germ-tube production by Candida albicans. Bruatto M; Gremmi M; Nardacchione A; Amerio M Mycopathologia; 1993 Aug; 123(2):105-10. PubMed ID: 8264767 [TBL] [Abstract][Full Text] [Related]
2. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947 [TBL] [Abstract][Full Text] [Related]
3. Starvation and germ tube formation in the exponential phase Candida albicans. Cho T; Hamatake H; Kaminishi H; Kuroki A; Suehara T; Suehara Y; Sakima T; Hagihara Y; Watanabe K Fukuoka Shika Daigaku Gakkai Zasshi; 1989; 16(4):510-21. PubMed ID: 2562099 [TBL] [Abstract][Full Text] [Related]
4. Trehalose hydrolysis is not required for human serum-induced dimorphic transition in Candida albicans: evidence from a tps1/tps1 mutant deficient in trehalose synthesis. Argüelles JC; Rodriguez T; Alvarez-Peral FJ Res Microbiol; 1999 Oct; 150(8):521-9. PubMed ID: 10577485 [TBL] [Abstract][Full Text] [Related]
5. The requirements for bicarbonate and metabolism of the inducer during germ tube formation by Candida albicans. Pollack JH; Hashimoto T Can J Microbiol; 1988 Nov; 34(11):1183-8. PubMed ID: 2850098 [TBL] [Abstract][Full Text] [Related]
6. Role of nutritional status of the cell in pH regulated dimorphism of Candida albicans. Paranjape V; Datta A FEMS Microbiol Lett; 1991 May; 64(2-3):333-6. PubMed ID: 1653171 [TBL] [Abstract][Full Text] [Related]
7. The role of glucose in the pH regulation of germ-tube formation in Candida albicans. Pollack JH; Hashimoto T J Gen Microbiol; 1987 Feb; 133(2):415-24. PubMed ID: 3309155 [TBL] [Abstract][Full Text] [Related]
8. Glucose influence on germ tube production in Candida albicans. Vidotto V; Accattatis G; Zhang Q; Campanini G; Aoki S Mycopathologia; 1996; 133(3):143-7. PubMed ID: 8817932 [TBL] [Abstract][Full Text] [Related]
9. The relationship between cyclic adenosine 3',5'-monophosphate and morphology in exponential phase Candida albicans. Cho T; Hamatake H; Kaminishi H; Hagihara Y; Watanabe K J Med Vet Mycol; 1992; 30(1):35-42. PubMed ID: 1315387 [TBL] [Abstract][Full Text] [Related]
10. Induction of germ-tube formation by Candida albicans in amino acid liquid synthetic medium at 25 degrees C. Sabie F; Gadd GM Mycopathologia; 1988 Feb; 101(2):77-83. PubMed ID: 3278238 [TBL] [Abstract][Full Text] [Related]
11. The Candida albicans plasma membrane and H(+)-ATPase during yeast growth and germ tube formation. Monk BC; Niimi M; Shepherd MG J Bacteriol; 1993 Sep; 175(17):5566-74. PubMed ID: 8366041 [TBL] [Abstract][Full Text] [Related]
12. Proline-induced germ-tube formation in Candida albicans: role of proline uptake and nitrogen metabolism. Holmes AR; Shepherd MG J Gen Microbiol; 1987 Nov; 133(11):3219-28. PubMed ID: 3328774 [TBL] [Abstract][Full Text] [Related]
13. Changes in external trehalase activity during human serum-induced dimorphic transition in Candida albicans. Alvarez-Peral FJ; Argüelles JC Res Microbiol; 2000 Dec; 151(10):837-43. PubMed ID: 11191809 [TBL] [Abstract][Full Text] [Related]
14. Effect of yeast growth conditions on yeast-mycelial transition in Candida albicans. Bell WM; Chaffin WL Mycopathologia; 1983 Dec; 84(1):41-4. PubMed ID: 6369144 [TBL] [Abstract][Full Text] [Related]
15. Induction of N-acetyl-D-glucosamine catabolic enzymes and germinative response in Candida albicans. Natarajan K; Rai YP; Datta A Biochem Int; 1984 Dec; 9(6):735-44. PubMed ID: 6395867 [TBL] [Abstract][Full Text] [Related]
16. The relationship between the glucose uptake system and growth cessation in Candida albicans. Cho T; Hagihara Y; Kaminishi H; Watanabe K J Med Vet Mycol; 1994 Dec; 32(6):461-6. PubMed ID: 7738728 [TBL] [Abstract][Full Text] [Related]
17. Germ tube induction in Candida albicans. Shepherd MG; Yin CY; Ram SP; Sullivan PA Can J Microbiol; 1980 Jan; 26(1):21-6. PubMed ID: 6996798 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of acyclic polyols and trehalose as related to growth form and carbohydrate source in the dimorphic fungi Mucor rouxii and Candida albicans. Pfyffer GE; Rast DM Mycopathologia; 1989 Jan; 105(1):25-33. PubMed ID: 2500596 [TBL] [Abstract][Full Text] [Related]
19. Differential profiles of soluble proteins during the initiation of morphogenesis in Candida albicans. Niimi M; Shepherd MG; Monk BC Arch Microbiol; 1996 Oct; 166(4):260-8. PubMed ID: 8824149 [TBL] [Abstract][Full Text] [Related]
20. Effect of pH, carbon source and K+ on the Na+-inhibited germ tube formation of Candida albicans. Biswas SK; Yokoyama K; Nishimura K; Miyaji M Med Mycol; 2000 Oct; 38(5):363-9. PubMed ID: 11092383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]