These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 826497)
1. PolA dependent repair of 5-bromouracil-labelled Bacillus subtilis transforming DNA irradiated with U.V. in the presence of cysteamine. Negishi K; Hayatsu H; Tanooka H Int J Radiat Biol Relat Stud Phys Chem Med; 1976 Nov; 30(5):491-4. PubMed ID: 826497 [No Abstract] [Full Text] [Related]
2. The influence of hydrogen donors on breakage of parental DNA strands on biological activity of transforming BrU-DNA of B. subtilis after 302-313 nm radiation. Köhnein W Z Naturforsch C Biosci; 1974; 29(1):66-71. PubMed ID: 4276387 [No Abstract] [Full Text] [Related]
3. Influence of cysteamine on intramolecular energy transfer in 5-bromouracil-substituted phage-DNA. Mönkehaus F Int J Radiat Biol Relat Stud Phys Chem Med; 1973 Nov; 24(5):517-24. PubMed ID: 4202668 [No Abstract] [Full Text] [Related]
4. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. II. Glutathione, cysteine and cysteamine. Held KD; Harrop HA; Michael BD Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Jun; 45(6):615-26. PubMed ID: 6429075 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of transforming DNA by ultraviolet light. II. Protection by histidine against near-UV irradiation: action spectrum. Peak MJ; Peak JG; Webb RB Mutat Res; 1973 Nov; 20(2):137-41. PubMed ID: 4201872 [No Abstract] [Full Text] [Related]
6. Damage to deoxyribose molecules and to U-gene reactivation in UV-irradiated 5-bromouracil-DNA of phage T4 Bor as influenced by cysteamine. Hotz G; Reuschl H Mol Gen Genet; 1967; 99(1):5-11. PubMed ID: 5586533 [No Abstract] [Full Text] [Related]
7. On the nature of the radiation damage in the thymine containing strand of hybrid BU-DNA after long wave-length U.V. Köhnlein W; Mönkehaus F Int J Radiat Biol Relat Stud Phys Chem Med; 1972 Sep; 22(3):293-6. PubMed ID: 4628820 [No Abstract] [Full Text] [Related]
8. Repair of U.V. damages in Bacillus subtilis cultures competent for transformation: difference between competent and non-competent fractions. Sgroi G; Cordone L; Fornili SL Nucleic Acids Res; 1975 Sep; 2(9):1569-77. PubMed ID: 809758 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of transforming DNA by ultraviolet light. 3. Further observations on the effects of 365 nm radiation. Peak MJ; Peak JG; Webb RB Mutat Res; 1973 Nov; 20(2):143-8. PubMed ID: 4201873 [No Abstract] [Full Text] [Related]
10. [Influence of cysteamine on the UV-sensitivity of lambda-phages with various BU-contents (author's transl)]. Mönkehaus F Z Naturforsch C Biosci; 1974; 29(5):286-8. PubMed ID: 4277046 [No Abstract] [Full Text] [Related]
11. Ultraviolet inactivation and excision-repair in Bacillus subtilis. IV. Integration and repair of ultraviolet-inactivated transforming DNA. Bron S; Venema G Mutat Res; 1972 Aug; 15(4):395-409. PubMed ID: 4625593 [No Abstract] [Full Text] [Related]
12. Ultraviolet inactivation and excision-repair in Bacillus subtilis. II. Differential inactivation and differential repair of transforming markers. Bron S; Venema G Mutat Res; 1972 May; 15(1):11-22. PubMed ID: 4623568 [No Abstract] [Full Text] [Related]
13. Inhibition of ultraviolet-induced chromosome breaks by cysteamine in 5-bromouracil-substituted mammalian cells. Trosko JE; Brewen JG Radiat Res; 1967 Oct; 32(2):200-13. PubMed ID: 6051471 [No Abstract] [Full Text] [Related]
14. The repair of ultraviolet-damaged DNA in Bacillus subtilis. Filippov VD Sov Genet; 1974 Jan; 7(10):1304-11. PubMed ID: 4207570 [No Abstract] [Full Text] [Related]
15. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. III. Reaction rates. Held KD; Harrop HA; Michael BD Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Jun; 45(6):627-36. PubMed ID: 6429076 [TBL] [Abstract][Full Text] [Related]
16. Differential effect of Bacillis subtilis extracts on transformation with nonirradiated and UV-irradiated DNA. Filippov VD; Danilevskaya ON Sov Genet; 1974 Sep; 8(10):1326-8. PubMed ID: 4216083 [No Abstract] [Full Text] [Related]
17. Genetic analysis of repair of ultraviolet damage by competent and noncompetent cells of Bacillus subtilis. Hadden CT; Billen D J Bacteriol; 1973 Jan; 113(1):88-95. PubMed ID: 4630515 [TBL] [Abstract][Full Text] [Related]
18. [Experimental evidence for intramolecular energy transfer in hybrid DNA of B. subtilis after irradiation with long wavelength UV]. Köhnlein W; Mönkehaus F Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Jun; 27(6):708-13. PubMed ID: 4403595 [No Abstract] [Full Text] [Related]
19. In vitro excision-repair of ultraviolet-irradiated transforming DNA from Bacillus subtilis. Heijneker HL; Pannekoek H; Oosterbaan RA; Pouwels PH; Bron S; Arwert F; Venema G Proc Natl Acad Sci U S A; 1971 Dec; 68(12):2967-71. PubMed ID: 5002281 [TBL] [Abstract][Full Text] [Related]
20. Influence of heavy ions on the transforming activity of DNA. Minkova MI; Ryzhov NI; Pantev TP Life Sci Space Res; 1976; 14():247-50. PubMed ID: 12678109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]