These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 826533)
1. Biosynthesis of ribothymidine in the transfer RNA of Streptococcus faecalis and Bacillus subtilis. A methylation of RNA involving 5,10-methylenetetrahydrofolate. Delk AS; Romeo JM; Nagle DP; Rabinowitz JC J Biol Chem; 1976 Dec; 251(23):7649-56. PubMed ID: 826533 [TBL] [Abstract][Full Text] [Related]
2. Methylenetetrahydrofolate-dependent biosynthesis of ribothymidine in transfer RNA of Streptococcus faecalis. Evidence for reduction of the 1-carbon unit by FADH2. Delk AS; Nagle DP; Rabinowitz JC J Biol Chem; 1980 May; 255(10):4387-90. PubMed ID: 6768721 [TBL] [Abstract][Full Text] [Related]
3. Biosynthetic pathway of ribothymidine in B. subtilis and M. lysodeikticus involving different coenzymes for transfer RNA and ribosomal RNA. Schmidt W; Arnold HH; Kersten H Nucleic Acids Res; 1975 Jul; 2(7):1043-51. PubMed ID: 807911 [TBL] [Abstract][Full Text] [Related]
4. The methylenetetrahydrofolate-mediated biosynthesis of ribothymidine in the transfer-RNA of Streptococcus faecalis: incorporation of hydrogen from solvent into the methyl moiety. Delk AS; Nagle DP; Rabinowitz JC; Straub KM Biochem Biophys Res Commun; 1979 Jan; 86(2):244-51. PubMed ID: 106850 [No Abstract] [Full Text] [Related]
5. Inhibition of the tetrahydrofolate-dependent biosynthesis of ribothymidine in tRNAs of B. subtilis and M. lysodeikticus by trimethoprim. Arnold HH; Kersten H FEBS Lett; 1975 May; 53(2):258-61. PubMed ID: 806472 [No Abstract] [Full Text] [Related]
6. Tetrahydrofolate-dependent biosynthesis of ribothymidine in transfer ribonucleic acids of Gram-positive bacteria. Schmidt W; Arnold HH; Kersten H J Bacteriol; 1977 Jan; 129(1):15-21. PubMed ID: 318638 [TBL] [Abstract][Full Text] [Related]
7. Occurrence and biosynthesis of ribothymidine in tRNAs of B. subtilis. Arnold HH; Schmidt W; Kersten H FEBS Lett; 1975 Mar; 52(1):62-5. PubMed ID: 164388 [No Abstract] [Full Text] [Related]
8. Biosynthesis of ribosylthymine in the transfer RNA of Streptococcus faecalis: a folate-dependent methylation not involving S-adenosylmethionine. Delk AS; Rabinowitz JC Proc Natl Acad Sci U S A; 1975 Feb; 72(2):528-30. PubMed ID: 804695 [TBL] [Abstract][Full Text] [Related]
9. The occurrence of a transmethylation reaction not involving S-adenosylmethionine in the formation of ribothymidine in Bacillus subtilis transfer-RNA. Romeo JM; Delk AS; Rabinowitz JC Biochem Biophys Res Commun; 1974 Dec; 61(4):1256-61. PubMed ID: 4218103 [No Abstract] [Full Text] [Related]
10. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R: partial purification and properties of methionyl-transfer ribonucleic acid synthetase and methionyl-transfer ribonucleic acid formyltransferase. Samuel CE; Rabinowitz JC J Bacteriol; 1974 Apr; 118(1):21-31. PubMed ID: 4206871 [TBL] [Abstract][Full Text] [Related]
11. Function of modified nucleosides 7-methylguanosine, ribothymidine, and 2-thiomethyl-N6-(isopentenyl)adenosine in procaryotic transfer ribonucleic acid. Hoburg A; Aschhoff HJ; Kersten H; Manderschied U; Gassen HG J Bacteriol; 1979 Nov; 140(2):408-14. PubMed ID: 115845 [TBL] [Abstract][Full Text] [Related]
12. Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications. Urbonavicius J; Skouloubris S; Myllykallio H; Grosjean H Nucleic Acids Res; 2005; 33(13):3955-64. PubMed ID: 16027442 [TBL] [Abstract][Full Text] [Related]
13. Undermethylated transfer ribonucleic acid from a relaxed strain of Bacillus subtilis: construction of the strain and analysis of the transfer ribonucleic acid. Keisel N; Vold B J Bacteriol; 1976 Apr; 126(1):294-9. PubMed ID: 816774 [TBL] [Abstract][Full Text] [Related]
14. Effect of ribothymidine in specific eukaryotic tRNAs on their efficiency in in vitro protein synthesis. Marcu KB; Dudock BS Nature; 1976 May; 261(5556):159-62. PubMed ID: 1272387 [No Abstract] [Full Text] [Related]
15. On the biosynthesis of 5-methoxyuridine and uridine-5-oxyacetic acid in specific procaryotic transfer RNAs. Murao K; Ishikura H; Albani M; Kersten H Nucleic Acids Res; 1978 Apr; 5(4):1273-81. PubMed ID: 418384 [TBL] [Abstract][Full Text] [Related]
16. Role of ribothymidine in mammalian tRNAPhe. Roe BA; Tsen HY Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3696-700. PubMed ID: 269424 [TBL] [Abstract][Full Text] [Related]
17. The occurrence of ribothymidine, 1-methyladenosine, methylated guanosines and the corresponding methyltransferases in E. coli and Bacillus subtilis. Arnold H; Kersten H FEBS Lett; 1973 Oct; 36(1):34-8. PubMed ID: 4201118 [No Abstract] [Full Text] [Related]
18. The folate-mediated synthesis of ribothymidylate in transfer ribonucleic acid, and evidence for multifunctional enzymes in one-carbon metabolism in eukaryotic sources. Rabinowitz JC Biochem Soc Trans; 1976; 4(5):850-3. PubMed ID: 826434 [No Abstract] [Full Text] [Related]
19. Comparative kinetics of hematoporphyrin derivative uptake and susceptibility of Bacillus subtilis and Streptococcus faecalis to photodynamic action. Shawar R; Cooper BH Photochem Photobiol; 1990 Oct; 52(4):825-30. PubMed ID: 2150982 [TBL] [Abstract][Full Text] [Related]
20. Identification of a novel tRNA wobble uridine modifying activity in the biosynthesis of 5-methoxyuridine. Ryu H; Grove TL; Almo SC; Kim J Nucleic Acids Res; 2018 Sep; 46(17):9160-9169. PubMed ID: 29982645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]