These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 826533)
21. A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis. Hamdane D; Guerineau V; Un S; Golinelli-Pimpaneau B Biochemistry; 2011 Jun; 50(23):5208-19. PubMed ID: 21561081 [TBL] [Abstract][Full Text] [Related]
22. Wheat germ tRNAs containing uridine in place of ribothymidine: a characterization of an unusual class of eukaryotic tRNAs. Marcu K; Marcu D; Dudock B Nucleic Acids Res; 1978 Apr; 5(4):1075-92. PubMed ID: 652515 [TBL] [Abstract][Full Text] [Related]
23. Replacement of pseudouridine in transfer RNA by 5-fluorouridine does not affect the ability to stimulate the synthesis of guanosine 5'-triphosphate 3'-diphosphate. Chinali G; Horowitz J; Ofengand J Biochemistry; 1978 Jul; 17(14):2755-60. PubMed ID: 356873 [TBL] [Abstract][Full Text] [Related]
24. Changes in transfer ribonucleic acids of Bacillus subtilis during different growth phases. Singhal RP; Vold B Nucleic Acids Res; 1976 May; 3(5):1249-62. PubMed ID: 821040 [TBL] [Abstract][Full Text] [Related]
25. Composition and Characterization of tRNA from Methanococcus vannielii. Best AN J Bacteriol; 1978 Jan; 133(1):240-50. PubMed ID: 618840 [TBL] [Abstract][Full Text] [Related]
26. In vitro detection of the enzymatic activity of folate-dependent tRNA (Uracil-54,-C5)-methyltransferase: evolutionary implications. Urbonavicius J; Brochier-Armanet C; Skouloubris S; Myllykallio H; Grosjean H Methods Enzymol; 2007; 425():103-19. PubMed ID: 17673080 [TBL] [Abstract][Full Text] [Related]
27. Occurrence of 1-methyladenosine and absence of ribothymidine in transfer ribonucleic acid of Mycobacterium smegmatis. Vani BR; Ramakrishnan T; Taya Y; Noguchi S; Yamaizumi Z; Nishimura S J Bacteriol; 1979 Mar; 137(3):1084-7. PubMed ID: 374335 [TBL] [Abstract][Full Text] [Related]
28. Identification and Characterization of Genes Required for 5-Hydroxyuridine Synthesis in Bacillus subtilis and Escherichia coli tRNA. Lauhon CT J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358606 [TBL] [Abstract][Full Text] [Related]
29. Methylation of an adenosine in the D-loop of specific transfer RNAs from yeast by a procaryotic tRNA (adenine-1) methyltransferase. Raettig R; Kersten H; Weissenbach J; Dirheimer G Nucleic Acids Res; 1977 Jun; 4(6):1769-82. PubMed ID: 408794 [TBL] [Abstract][Full Text] [Related]
30. 5-Methoxyuridine, a new modified constituent in tRNAs of Bacillaceae. Albani M; Schmidt W; Kersten H; Geibel K; Lüderwald I FEBS Lett; 1976 Nov; 70(1):37-42. PubMed ID: 825391 [No Abstract] [Full Text] [Related]
31. Methionine transfer ribonucleic acid from folate-sufficient and folate-deficient Streptococcus faecalis R. Samuel CE; Murray CL; Rabinowitz JC J Biol Chem; 1972 Nov; 247(21):6856-65. PubMed ID: 4628266 [No Abstract] [Full Text] [Related]
32. Base analysis of RNA by 3H postlabeling--a study of ribothymidine content and degree of base methylation of 4 S RNA. Randerath E; Chia LL; Morris HP; Randerath K Biochim Biophys Acta; 1974 Oct; 366(2):159-67. PubMed ID: 4376020 [No Abstract] [Full Text] [Related]
33. Folic acid and the methylation of homocysteine by Bacillus subtilis. Salem AR; Pattison JR; Foster MA Biochem J; 1972 Feb; 126(4):993-1004. PubMed ID: 4627401 [TBL] [Abstract][Full Text] [Related]
34. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs. Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931 [TBL] [Abstract][Full Text] [Related]
35. In vitro methylation of tobacco mosaic virus RNA with ribothymidine-forming tRNA methyltransferase. Characterization and specificity of the reaction. Lesiewicz J; Dudock B Biochim Biophys Acta; 1978 Sep; 520(2):411-8. PubMed ID: 361090 [TBL] [Abstract][Full Text] [Related]
36. Two conjugation systems associated with Streptococcus faecalis plasmid pCF10: identification of a conjugative transposon that transfers between S. faecalis and Bacillus subtilis. Christie PJ; Korman RZ; Zahler SA; Adsit JC; Dunny GM J Bacteriol; 1987 Jun; 169(6):2529-36. PubMed ID: 3034859 [TBL] [Abstract][Full Text] [Related]
37. Formation of ribothymidine from thymine and ribonucleosides by the cell-free extract of tumors and rat tissues. Yano S; Tamemasa O J Biochem; 1977 Dec; 82(6):1505-11. PubMed ID: 340451 [TBL] [Abstract][Full Text] [Related]
38. Nucleoside changes in tRNAs from Bacillus subtilus treated with 5-fluorouracil. Kaiser II; Kladianos DM Biochim Biophys Acta; 1981 Jan; 652(1):218-22. PubMed ID: 6783092 [TBL] [Abstract][Full Text] [Related]
39. Role of ribothymidine in the thermal stability of transfer RNA as monitored by proton magnetic resonance. Davanloo P; Sprinzl M; Watanabe K; Albani M; Kersten H Nucleic Acids Res; 1979 Apr; 6(4):1571-81. PubMed ID: 377228 [TBL] [Abstract][Full Text] [Related]
40. Valine transfer ribonucleic acid. I. Chromatographic study of valine tRNA modifications during Bacillus subtilis growth. Heyman T; Seror S; Desseaux B; Legault-Demare J Biochim Biophys Acta; 1967; 145(3):596-604. PubMed ID: 4965167 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]