BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 8265366)

  • 1. Polyamine-linked oligonucleotides for DNA triple helix formation.
    Tung CH; Breslauer KJ; Stein S
    Nucleic Acids Res; 1993 Nov; 21(23):5489-94. PubMed ID: 8265366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplex formation at physiological pH by oligonucleotides incorporating 5-Me-dC-(N4-spermine).
    Barawkar DA; Kumar VA; Ganesh KN
    Biochem Biophys Res Commun; 1994 Dec; 205(3):1665-70. PubMed ID: 7811251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple-helix formation by alpha oligodeoxynucleotides and alpha oligodeoxynucleotide-intercalator conjugates.
    Sun JS; Giovannangeli C; François JC; Kurfurst R; Montenay-Garestier T; Asseline U; Saison-Behmoaras T; Thuong NT; Hélène C
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6023-7. PubMed ID: 2068079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition.
    Xodo L; Alunni-Fabbroni M; Manzini G; Quadrifoglio F
    Nucleic Acids Res; 1994 Aug; 22(16):3322-30. PubMed ID: 8078767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity of polyamines on the stability of RNA-DNA hybrids containing phosphodiester and phosphorothioate oligodeoxyribonucleotides.
    Antony T; Thomas T; Shirahata A; Thomas TJ
    Biochemistry; 1999 Aug; 38(33):10775-84. PubMed ID: 10451373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel DNA duplex. A parallel-stranded DNA helix with Hoogsteen base pairing.
    Liu K; Miles HT; Frazier J; Sasisekharan V
    Biochemistry; 1993 Nov; 32(44):11802-9. PubMed ID: 8218251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides.
    Xodo LE; Alunni-Fabbroni M; Manzini G
    J Biomol Struct Dyn; 1994 Feb; 11(4):703-20. PubMed ID: 8204209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic characterization of a triple-helical three-way junction containing a Hoogsteen branch point.
    Hüsler PL; Klump HH
    Arch Biochem Biophys; 1995 Sep; 322(1):149-66. PubMed ID: 7574670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-strand DNA triple-helix formation.
    Häner R; Dervan PB
    Biochemistry; 1990 Oct; 29(42):9761-5. PubMed ID: 2271614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing DNA triple helix structure by chemical ligation.
    Dolinnaya NG; Pyatrauskene OV; Shabarova ZA
    FEBS Lett; 1991 Jun; 284(2):232-4. PubMed ID: 2060640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of netropsin to a DNA triple helix.
    Durand M; Thuong NT; Maurizot JC
    J Biol Chem; 1992 Dec; 267(34):24394-9. PubMed ID: 1332955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides.
    Musso M; Van Dyke MW
    Nucleic Acids Res; 1995 Jun; 23(12):2320-7. PubMed ID: 7610062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics of a stable intramolecular DNA triple helix formation.
    Völker J; Botes DP; Lindsey GG; Klump HH
    J Mol Biol; 1993 Apr; 230(4):1278-90. PubMed ID: 8487304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strand orientation of [alpha]-oligodeoxynucleotides in triple helix structures: dependence on nucleotide sequence.
    Sun JS; Lavery R
    J Mol Recognit; 1992 Sep; 5(3):93-8. PubMed ID: 1298305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triple-helix formation by oligonucleotides containing the three bases thymine, cytosine, and guanine.
    Giovannangéli C; Rougée M; Garestier T; Thuong NT; Hélène C
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8631-5. PubMed ID: 1528873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of an intramolecular DNA triple helix: a calorimetric and spectroscopic study of the pH and salt dependence of thermally induced structural transitions.
    Plum GE; Breslauer KJ
    J Mol Biol; 1995 May; 248(3):679-95. PubMed ID: 7752233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of restriction endonuclease cleavage via triple helix formation by homopyrimidine oligonucleotides.
    François JC; Saison-Behmoaras T; Thuong NT; Hélène C
    Biochemistry; 1989 Dec; 28(25):9617-9. PubMed ID: 2558728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA triple-helix formation at physiologic pH and temperature.
    Hanvey JC; Williams EM; Besterman JM
    Antisense Res Dev; 1991; 1(4):307-17. PubMed ID: 1821652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 6-Oxocytidine a novel protonated C-base analogue for stable triple helix formation.
    Berressem R; Engels JW
    Nucleic Acids Res; 1995 Sep; 23(17):3465-72. PubMed ID: 7567457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.