These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 8265563)
1. Influence of protein flexibility on the redox potential of rubredoxin: energy minimization studies. Shenoy VS; Ichiye T Proteins; 1993 Oct; 17(2):152-60. PubMed ID: 8265563 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions. Yelle RB; Park NS; Ichiye T Proteins; 1995 Jun; 22(2):154-67. PubMed ID: 7567963 [TBL] [Abstract][Full Text] [Related]
3. Protein contributions to redox potentials of homologous rubredoxins: an energy minimization study. Swartz PD; Ichiye T Biophys J; 1997 Nov; 73(5):2733-41. PubMed ID: 9370467 [TBL] [Abstract][Full Text] [Related]
4. Temperature dependence of the redox potential of rubredoxin from Pyrococcus furiosus: a molecular dynamics study. Swartz PD; Ichiye T Biochemistry; 1996 Oct; 35(43):13772-9. PubMed ID: 8901519 [TBL] [Abstract][Full Text] [Related]
5. The role of backbone stability near Ala44 in the high reduction potential class of rubredoxins. Tan ML; Kang C; Ichiye T Proteins; 2006 Mar; 62(3):708-14. PubMed ID: 16362979 [TBL] [Abstract][Full Text] [Related]
6. Crystallographic studies of V44 mutants of Clostridium pasteurianum rubredoxin: effects of side-chain size on reduction potential. Park IY; Eidsness MK; Lin IJ; Gebel EB; Youn B; Harley JL; Machonkin TE; Frederick RO; Markley JL; Smith ET; Ichiye T; Kang C Proteins; 2004 Nov; 57(3):618-25. PubMed ID: 15382226 [TBL] [Abstract][Full Text] [Related]
7. Redox properties of mesophilic and hyperthermophilic rubredoxins as a function of pressure and temperature. Gillès de Pélichy LD; Smith ET Biochemistry; 1999 Jun; 38(24):7874-80. PubMed ID: 10387028 [TBL] [Abstract][Full Text] [Related]
8. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation. Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500 [TBL] [Abstract][Full Text] [Related]
9. Correlation between hydrogen bond lengths and reduction potentials in Clostridium pasteurianum rubredoxin. Lin IJ; Gebel EB; Machonkin TE; Westler WM; Markley JL J Am Chem Soc; 2003 Feb; 125(6):1464-5. PubMed ID: 12568591 [TBL] [Abstract][Full Text] [Related]
10. Calculation of redox properties: understanding short- and long-range effects in rubredoxin. Sulpizi M; Raugei S; VandeVondele J; Carloni P; Sprik M J Phys Chem B; 2007 Apr; 111(15):3969-76. PubMed ID: 17388622 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0.68 A resolution. Chen CJ; Lin YH; Huang YC; Liu MY Biochem Biophys Res Commun; 2006 Oct; 349(1):79-90. PubMed ID: 16930541 [TBL] [Abstract][Full Text] [Related]
12. The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer. Park IY; Youn B; Harley JL; Eidsness MK; Smith E; Ichiye T; Kang C J Biol Inorg Chem; 2004 Jun; 9(4):423-8. PubMed ID: 15067525 [TBL] [Abstract][Full Text] [Related]
13. Density functional and reduction potential calculations of Fe4S4 clusters. Torres RA; Lovell T; Noodleman L; Case DA J Am Chem Soc; 2003 Feb; 125(7):1923-36. PubMed ID: 12580620 [TBL] [Abstract][Full Text] [Related]
14. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874 [TBL] [Abstract][Full Text] [Related]
15. A novel parameterization scheme for energy equations and its use to calculate the structure of protein molecules. Snow ME Proteins; 1993 Feb; 15(2):183-90. PubMed ID: 8441753 [TBL] [Abstract][Full Text] [Related]
16. Protein control of electron transfer rates via polarization: molecular dynamics studies of rubredoxin. Dolan EA; Yelle RB; Beck BW; Fischer JT; Ichiye T Biophys J; 2004 Apr; 86(4):2030-6. PubMed ID: 15041645 [TBL] [Abstract][Full Text] [Related]
17. Metal-substituted derivatives of the rubredoxin from Clostridium pasteurianum. Maher M; Cross M; Wilce MC; Guss JM; Wedd AG Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):298-303. PubMed ID: 14747706 [TBL] [Abstract][Full Text] [Related]
18. Residue cluster additivity of thermodynamic stability in the hydrophobic core of mesophile vs. hyperthermophile rubredoxins. LeMaster DM; Hernández G Biophys Chem; 2007 Feb; 125(2-3):483-9. PubMed ID: 17118523 [TBL] [Abstract][Full Text] [Related]
19. Leucine 41 is a gate for water entry in the reduction of Clostridium pasteurianum rubredoxin. Min T; Ergenekan CE; Eidsness MK; Ichiye T; Kang C Protein Sci; 2001 Mar; 10(3):613-21. PubMed ID: 11344329 [TBL] [Abstract][Full Text] [Related]
20. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Dauter Z; Wilson KS; Sieker LC; Moulis JM; Meyer J Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8836-40. PubMed ID: 8799113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]