These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 8265564)
1. Site specific point mutation changes specificity: a molecular modeling study by free energy simulations and enzyme kinetics of the thermodynamics in ribonuclease T1 substrate interactions. Elofsson A; Kulinski T; Rigler R; Nilsson L Proteins; 1993 Oct; 17(2):161-75. PubMed ID: 8265564 [TBL] [Abstract][Full Text] [Related]
2. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis. MacKerell AD; Sommer MS; Karplus M J Mol Biol; 1995 Apr; 247(4):774-807. PubMed ID: 7723031 [TBL] [Abstract][Full Text] [Related]
3. Calculation of the relative binding free energy of 2'GMP and 2'AMP to ribonuclease T1 using molecular dynamics/free energy perturbation approaches. Hirono S; Kollman PA J Mol Biol; 1990 Mar; 212(1):197-209. PubMed ID: 2157020 [TBL] [Abstract][Full Text] [Related]
4. Analysis of internal motions of RNase T1 complexed with a productive substrate involving 15N NMR relaxation measurements. Yoshida Y; Tanaka M; Ohkuri T; Tanaka Y; Imoto T; Ueda T J Biochem; 2006 Jul; 140(1):43-8. PubMed ID: 16877767 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis. Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulations of ribonuclease T1: comparison of the free enzyme and the 2' GMP-enzyme complex. MacKerell AD; Nilsson L; Rigler R; Heinemann U; Saenger W Proteins; 1989; 6(1):20-31. PubMed ID: 2558378 [TBL] [Abstract][Full Text] [Related]
7. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease. Schrift GL; Waldron TT; Timmons MA; Ramaswamy S; Kearney WR; Murphy KP J Mol Biol; 2006 Jan; 355(1):72-84. PubMed ID: 16300786 [TBL] [Abstract][Full Text] [Related]
8. Structural analysis of an RNase T1 variant with an altered guanine binding segment. Höschler K; Hoier H; Hubner B; Saenger W; Orth P; Hahn U J Mol Biol; 1999 Dec; 294(5):1231-8. PubMed ID: 10600381 [TBL] [Abstract][Full Text] [Related]
9. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. Archontis G; Simonson T; Karplus M J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of ribonuclease F1 of Fusarium moniliforme in its free form and in complex with 2'GMP. Vassylyev DG; Katayanagi K; Ishikawa K; Tsujimoto-Hirano M; Danno M; Pähler A; Matsumoto O; Matsushima M; Yoshida H; Morikawa K J Mol Biol; 1993 Apr; 230(3):979-96. PubMed ID: 8386773 [TBL] [Abstract][Full Text] [Related]
12. Glycogen phosphorylase inhibitors: a free energy perturbation analysis of glucopyranose spirohydantoin analogues. Archontis G; Watson KA; Xie Q; Andreou G; Chrysina ED; Zographos SE; Oikonomakos NG; Karplus M Proteins; 2005 Dec; 61(4):984-98. PubMed ID: 16245298 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the functional interplay between the primary site and the subsite of RNase T1: kinetic analysis of single and multiple mutants for modified substrates. Steyaert J; Haikal AF; Wyns L Proteins; 1994 Apr; 18(4):318-23. PubMed ID: 8208724 [TBL] [Abstract][Full Text] [Related]
14. Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations. Archontis G; Simonson T; Moras D; Karplus M J Mol Biol; 1998 Feb; 275(5):823-46. PubMed ID: 9480772 [TBL] [Abstract][Full Text] [Related]
15. Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin. Rao SN; Singh UC; Bash PA; Kollman PA Nature; 1987 Aug 6-12; 328(6130):551-4. PubMed ID: 3302725 [TBL] [Abstract][Full Text] [Related]
16. Computer modeling studies on the binding of 2',5'-linked dinucleoside phosphates to ribonuclease T1-influence of subsite interactions on the substrate specificity. Balaji PV; Saenger W; Rao VS J Biomol Struct Dyn; 1993 Apr; 10(5):891-903. PubMed ID: 8391269 [TBL] [Abstract][Full Text] [Related]
17. Addressing the challenge of changing the specificity of RNase T1 with rational and evolutionary approaches. Struhalla M; Czaja R; Hahn U Chembiochem; 2004 Feb; 5(2):200-5. PubMed ID: 14760741 [TBL] [Abstract][Full Text] [Related]
18. Computer modelling studies of ribonuclease T1-2'-deoxy-2'-fluoroguanylyl- (3',5')-cytidine complex. Balaji PV; Rao VS Indian J Biochem Biophys; 1991; 28(5-6):358-62. PubMed ID: 1812067 [TBL] [Abstract][Full Text] [Related]
19. Substrate binding mechanism of Glu180-->Gln, Asp176-->Asn, and wild-type glucoamylases from Aspergillus niger. Christensen U; Olsen K; Stoffer BB; Svensson B Biochemistry; 1996 Nov; 35(47):15009-18. PubMed ID: 8942667 [TBL] [Abstract][Full Text] [Related]
20. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A. Mann G; Hermans J J Mol Biol; 2000 Sep; 302(4):979-89. PubMed ID: 10993736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]