BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 8265604)

  • 1. Evidence that facilitative glucose transporters may fold as beta-barrels.
    Fischbarg J; Cheung M; Czegledy F; Li J; Iserovich P; Kuang K; Hubbard J; Garner M; Rosen OM; Golde DW
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11658-62. PubMed ID: 8265604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal mutations that alter the turnover number for 3-O-methylglucose transport by GLUT1 and GLUT4.
    Dauterive R; Laroux S; Bunn RC; Chaisson A; Sanson T; Reed BC
    J Biol Chem; 1996 May; 271(19):11414-21. PubMed ID: 8626697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin and insulin-like growth factor I (IGF-I) stimulate GLUT4 glucose transporter translocation in Xenopus oocytes.
    Mora S; Kaliman P; Chillarón J; Testar X; Palacín M; Zorzano A
    Biochem J; 1995 Oct; 311 ( Pt 1)(Pt 1):59-65. PubMed ID: 7575481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity.
    Arbuckle MI; Kane S; Porter LM; Seatter MJ; Gould GW
    Biochemistry; 1996 Dec; 35(51):16519-27. PubMed ID: 8987985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the C-terminal tail of the GLUT1 glucose transporter in its expression and function in Xenopus laevis oocytes.
    Due AD; Qu ZC; Thomas JM; Buchs A; Powers AC; May JM
    Biochemistry; 1995 Apr; 34(16):5462-71. PubMed ID: 7727404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete structural domains determine differential endoplasmic reticulum to Golgi transit times for glucose transporter isoforms.
    Hresko RC; Murata H; Marshall BA; Mueckler M
    J Biol Chem; 1994 Dec; 269(51):32110-9. PubMed ID: 7798206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility.
    Mueckler M; Makepeace C
    J Biol Chem; 2002 Feb; 277(5):3498-503. PubMed ID: 11713254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are most transporters and channels beta barrels?
    Fischbarg J; Cheung M; Li J; Iserovich P; Czegledy F; Kuang K; Garner M
    Mol Cell Biochem; 1994 Nov; 140(2):147-62. PubMed ID: 7534868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of facilitative glucose transporter isoforms in human brain tumors.
    Nagamatsu S; Sawa H; Wakizaka A; Hoshino T
    J Neurochem; 1993 Dec; 61(6):2048-53. PubMed ID: 8245960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins.
    Burant CF; Bell GI
    Biochemistry; 1992 Oct; 31(42):10414-20. PubMed ID: 1420159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous expression of rab4 reduces glucose transport and GLUT4 abundance at the cell surface in oocytes.
    Mora S; Monden I; Zorzano A; Keller K
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):455-9. PubMed ID: 9182703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of transmembrane segment 8 of the GLUT1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility.
    Mueckler M; Makepeace C
    J Biol Chem; 2004 Mar; 279(11):10494-9. PubMed ID: 14688257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxy terminus of glucose transporter 3 contains an apical membrane targeting domain.
    Inukai K; Shewan AM; Pascoe WS; Katayama S; James DE; Oka Y
    Mol Endocrinol; 2004 Feb; 18(2):339-49. PubMed ID: 14605095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The large cytoplasmic loop of the glucose transporter GLUT1 is an essential structural element for function.
    Monden I; Olsowski A; Krause G; Keller K
    Biol Chem; 2001 Nov; 382(11):1551-8. PubMed ID: 11767944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal.
    Corvera S; Chawla A; Chakrabarti R; Joly M; Buxton J; Czech MP
    J Cell Biol; 1994 Aug; 126(4):979-89. PubMed ID: 7519625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site.
    Seatter MJ; De la Rue SA; Porter LM; Gould GW
    Biochemistry; 1998 Feb; 37(5):1322-6. PubMed ID: 9477959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domains that confer intracellular sequestration of the Glut4 glucose transporter in Xenopus oocytes.
    Marshall BA; Murata H; Hresko RC; Mueckler M
    J Biol Chem; 1993 Dec; 268(35):26193-9. PubMed ID: 8253739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells.
    Giorgino F; de Robertis O; Laviola L; Montrone C; Perrini S; McCowen KC; Smith RJ
    Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1125-30. PubMed ID: 10655495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro analysis of the glucose-transport system in GLUT4-null skeletal muscle.
    Ryder JW; Kawano Y; Chibalin AV; Rincón J; Tsao TS; Stenbit AE; Combatsiaris T; Yang J; Holman GD; Charron MJ; Zierath JR
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):321-8. PubMed ID: 10455018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two regions of GLUT 2 glucose transporter protein are responsible for its distinctive affinity for glucose.
    Buchs A; Wu L; Morita H; Whitesell RR; Powers AC
    Endocrinology; 1995 Oct; 136(10):4224-30. PubMed ID: 7664639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.