These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 8265657)
1. Aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains. Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11980-4. PubMed ID: 8265657 [TBL] [Abstract][Full Text] [Related]
2. In vivo formation of allosteric aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains: implications for protein folding and assembly. Zhang P; Schachman HK Protein Sci; 1996 Jul; 5(7):1290-300. PubMed ID: 8819162 [TBL] [Abstract][Full Text] [Related]
3. In vivo assembly of aspartate transcarbamoylase from fragmented and circularly permuted catalytic polypeptide chains. Ni X; Schachman HK Protein Sci; 2001 Mar; 10(3):519-27. PubMed ID: 11344320 [TBL] [Abstract][Full Text] [Related]
4. In vivo formation of active aspartate transcarbamoylase from complementing fragments of the catalytic polypeptide chains. Yang YR; Schachman HK Protein Sci; 1993 Jun; 2(6):1013-23. PubMed ID: 8318886 [TBL] [Abstract][Full Text] [Related]
5. Random circular permutation of genes and expressed polypeptide chains: application of the method to the catalytic chains of aspartate transcarbamoylase. Graf R; Schachman HK Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11591-6. PubMed ID: 8876180 [TBL] [Abstract][Full Text] [Related]
6. Role of a carboxyl-terminal helix in the assembly, interchain interactions, and stability of aspartate transcarbamoylase. Peterson CB; Schachman HK Proc Natl Acad Sci U S A; 1991 Jan; 88(2):458-62. PubMed ID: 1899140 [TBL] [Abstract][Full Text] [Related]
7. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains. Powers VM; Yang YR; Fogli MJ; Schachman HK Protein Sci; 1993 Jun; 2(6):1001-12. PubMed ID: 8318885 [TBL] [Abstract][Full Text] [Related]
8. Random circular permutation leading to chain disruption within and near alpha helices in the catalytic chains of aspartate transcarbamoylase: effects on assembly, stability, and function. Beernink PT; Yang YR; Graf R; King DS; Shah SS; Schachman HK Protein Sci; 2001 Mar; 10(3):528-37. PubMed ID: 11344321 [TBL] [Abstract][Full Text] [Related]
9. Structural similarity between ornithine and aspartate transcarbamoylases of Escherichia coli: characterization of the active site and evidence for an interdomain carboxy-terminal helix in ornithine transcarbamoylase. Murata LB; Schachman HK Protein Sci; 1996 Apr; 5(4):709-18. PubMed ID: 8845761 [TBL] [Abstract][Full Text] [Related]
10. Association of the catalytic subunit of aspartate transcarbamoylase with a zinc-containing polypeptide fragment of the regulatory chain leads to increases in thermal stability. Peterson CB; Zhou BB; Hsieh D; Creager AN; Schachman HK Protein Sci; 1994 Jun; 3(6):960-6. PubMed ID: 8069225 [TBL] [Abstract][Full Text] [Related]
11. Three of the six possible intersubunit stabilizing interactions involving Glu-239 are sufficient for restoration of the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase. Sakash JB; Chan RS; Tsuruta H; Kantrowitz ER J Biol Chem; 2000 Jan; 275(2):752-8. PubMed ID: 10625604 [TBL] [Abstract][Full Text] [Related]
12. A cooperative Escherichia coli aspartate transcarbamoylase without regulatory subunits . Mendes KR; Kantrowitz ER Biochemistry; 2010 Sep; 49(35):7694-703. PubMed ID: 20681545 [TBL] [Abstract][Full Text] [Related]
13. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase. Robey EA; Schachman HK Proc Natl Acad Sci U S A; 1985 Jan; 82(2):361-5. PubMed ID: 3881763 [TBL] [Abstract][Full Text] [Related]
14. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity. Markby DW; Zhou BB; Schachman HK Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722 [TBL] [Abstract][Full Text] [Related]
15. Changes in stability and allosteric properties of aspartate transcarbamoylase resulting from amino acid substitutions in the zinc-binding domain of the regulatory chains. Eisenstein E; Markby DW; Schachman HK Proc Natl Acad Sci U S A; 1989 May; 86(9):3094-8. PubMed ID: 2566165 [TBL] [Abstract][Full Text] [Related]
16. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis. Wente SR; Schachman HK Proc Natl Acad Sci U S A; 1987 Jan; 84(1):31-5. PubMed ID: 3540957 [TBL] [Abstract][Full Text] [Related]
17. Negative complementation in aspartate transcarbamylase. Analysis of hybrid enzyme molecules containing different arrangements of polypeptide chains from wild-type and inactive mutant catalytic subunits. Eisenstein E; Han MS; Woo TS; Ritchey JM; Gibbons I; Yang YR; Schachman HK J Biol Chem; 1992 Nov; 267(31):22148-55. PubMed ID: 1429567 [TBL] [Abstract][Full Text] [Related]
18. The conserved residues glutamate-37, aspartate-100, and arginine-269 are important for the structural stabilization of Escherichia coli aspartate transcarbamoylase. Baker DP; Kantrowitz ER Biochemistry; 1993 Sep; 32(38):10150-8. PubMed ID: 8104480 [TBL] [Abstract][Full Text] [Related]
19. Charge neutralization in the active site of the catalytic trimer of aspartate transcarbamoylase promotes diverse structural changes. Endrizzi JA; Beernink PT Protein Sci; 2017 Nov; 26(11):2221-2228. PubMed ID: 28833948 [TBL] [Abstract][Full Text] [Related]
20. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. Wales ME; Madison LL; Glaser SS; Wild JR J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]