These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8266784)

  • 1. Spontaneous cellular vibrations in the guinea-pig cochlea.
    Keilson SE; Khanna SM; Ulfendahl M; Teich MC
    Acta Otolaryngol; 1993 Sep; 113(5):591-7. PubMed ID: 8266784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous cellular vibrations in the guinea-pig temporal-bone preparation.
    Khanna SM; Keilson SE; Ulfendahl M; Teich MC
    Br J Audiol; 1993 Apr; 27(2):79-83. PubMed ID: 8220285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measures of auditory brain-stem responses, distortion product otoacoustic emissions, hair cell loss, and forward masked tuning curves in the waltzing guinea pig.
    Canlon B; Marklund K; Borg E
    J Acoust Soc Am; 1993 Dec; 94(6):3232-43. PubMed ID: 8300958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A second, low-frequency mode of vibration in the intact mammalian cochlea.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2003 Mar; 113(3):1544-50. PubMed ID: 12656389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical nonlinearity in the apical turn of the guinea pig organ of Corti.
    Hao LF; Khanna SM
    Hear Res; 2000 Oct; 148(1-2):31-46. PubMed ID: 10978823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of salicylate on electrically evoked otoacoustic emissions elicited in the first and third turns of the guinea pig cochlea.
    Fujimura K; Yoshida M; Goto K; Mori T; Suzuki H
    Acta Otolaryngol; 2004 Oct; 124(8):896-901. PubMed ID: 15513523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reticular lamina vibrations in the apical turn of a living guinea pig cochlea.
    Khanna SM; Hao LF
    Hear Res; 1999 Jun; 132(1-2):15-33. PubMed ID: 10392544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the mechanical tuning characteristics of the hearing organ following acoustic overstimulation.
    Ulfendahl M; Khanna SM; Löfstrand P
    Eur J Neurosci; 1993 Jun; 5(6):713-23. PubMed ID: 8261142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinearity in the apical turn of living guinea pig cochlea.
    Khanna SM; Hao LF
    Hear Res; 1999 Sep; 135(1-2):89-104. PubMed ID: 10491958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of low-frequency biasing on spontaneous otoacoustic emissions: amplitude modulation.
    Bian L; Watts KL
    J Acoust Soc Am; 2008 Feb; 123(2):887-98. PubMed ID: 18247892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromotile responses and frequency tuning of isolated outer hair cells of the guinea pig cochlea.
    Gitter AH; Zenner HP
    Eur Arch Otorhinolaryngol; 1995; 252(1):15-9. PubMed ID: 7718223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating routes to chaos in the guinea-pig cochlea using the continuous wavelet transform and the short-time Fourier transform.
    Teich MC; Heneghan C; Khanna SM; Flock A; Ulfendahl M; Brundin L
    Ann Biomed Eng; 1995; 23(5):583-607. PubMed ID: 7503461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Suppression of spontaneous AC potentials in guinea pig cochlea by external tones].
    Yoshida M; Aoyagi M; Makishima K
    Nihon Jibiinkoka Gakkai Kaiho; 1996 Feb; 99(2):327-32. PubMed ID: 8851339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of lidocaine on basilar membrane vibration in the guinea pig.
    Maruyama J; Kobayashi T; Sugimoto A; Gyo K
    Acta Otolaryngol; 2001 Oct; 121(7):803-7. PubMed ID: 11718242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones.
    Magnan P; Avan P; Dancer A; Smurzynski J; Probst R
    Hear Res; 1997 May; 107(1-2):41-5. PubMed ID: 9165345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectrum of neural electrical activity in guinea pig cochlea: effects of anaesthesia regimen, body temperature and ambient noise.
    Sendowski I; Raffin F; Clarençon D
    Hear Res; 2006 Jan; 211(1-2):63-73. PubMed ID: 16310327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of the travelling wave in the low-frequency region of a temporal-bone preparation of the guinea-pig cochlea.
    Hemmert W; Zenner H; Gummer AW
    Hear Res; 2000 Apr; 142(1-2):184-202. PubMed ID: 10748338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.