These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 8266830)
1. Interrelationships between densitometric, geometric, and mechanical properties of rat femora: inferences concerning mechanical regulation of bone modeling. Ferretti JL; Capozza RF; Mondelo N; Zanchetta JR J Bone Miner Res; 1993 Nov; 8(11):1389-96. PubMed ID: 8266830 [TBL] [Abstract][Full Text] [Related]
2. [Effects of bisphosphonates on the mechanical efficiency of normal and osteopenic bones]. Ferretti JL; Cointry GR; Capozza RF; Mondelo N; Peluffo V; Chiappe A; Meta M; Alippi RM Medicina (B Aires); 1997; 57 Suppl 1():83-92. PubMed ID: 9567360 [TBL] [Abstract][Full Text] [Related]
3. Interrelationships between geometric and mechanical properties of long bones from three rodent species with very different biomass: phylogenetic implications. Ferretti JL; Spiaggi EP; Capozza R; Cointry G; Zanchetta JR J Bone Miner Res; 1992 Dec; 7 Suppl 2():S433-5. PubMed ID: 1485553 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical impact of aluminum accumulation on the pre- and post-yield behavior of rat cortical bone. Cointry GR; Capozza RF; Negri AL; Ferretti JL J Bone Miner Metab; 2005; 23(1):15-23. PubMed ID: 15616889 [TBL] [Abstract][Full Text] [Related]
5. Growth-dependent effects of dietary protein concentration and quality on the biomechanical properties of the diaphyseal rat femur. Alippi RM; Picasso E; Huygens P; Bozzini CE; Bozzini C Endocrinol Nutr; 2012 Jan; 59(1):35-43. PubMed ID: 22137534 [TBL] [Abstract][Full Text] [Related]
6. Long-term alcohol consumption in the rat affects femur cross-sectional geometry and bone tissue material properties. Hogan HA; Groves JA; Sampson HW Alcohol Clin Exp Res; 1999 Nov; 23(11):1825-33. PubMed ID: 10591600 [TBL] [Abstract][Full Text] [Related]
7. Effect of bone size, not density, on the stiffness of the proximal part of normal and osteoporotic human femora. Cordey J; Schneider M; Belendez C; Ziegler WJ; Rahn BA; Perren SM J Bone Miner Res; 1992 Dec; 7 Suppl 2():S437-44. PubMed ID: 1485554 [TBL] [Abstract][Full Text] [Related]
8. Three-point bending and acoustic emission study of adult rat femora after immobilization and free remobilization. Trebacz H; Zdunek A J Biomech; 2006; 39(2):237-45. PubMed ID: 16321625 [TBL] [Abstract][Full Text] [Related]
9. CART deficiency increases body weight but does not alter bone strength. Bartell SM; Isales CM; Baile CA; Kuhar MJ; Hamrick MW J Musculoskelet Neuronal Interact; 2008; 8(2):146-53. PubMed ID: 18622083 [TBL] [Abstract][Full Text] [Related]
10. Diminished material properties and altered bone structure in rat femora during pregnancy. Leopold SS; Boskey AL; Doty SB; Gertner JM; Peterson MG; Torzilli PA J Orthop Res; 1995 Jan; 13(1):41-9. PubMed ID: 7853103 [TBL] [Abstract][Full Text] [Related]
11. Genetic variation in femur extrinsic strength in 29 different inbred strains of mice is dependent on variations in femur cross-sectional geometry and bone density. Wergedal JE; Sheng MH; Ackert-Bicknell CL; Beamer WG; Baylink DJ Bone; 2005 Jan; 36(1):111-22. PubMed ID: 15664009 [TBL] [Abstract][Full Text] [Related]
12. Bone intrinsic material properties in three inbred mouse strains. Akhter MP; Fan Z; Rho JY Calcif Tissue Int; 2004 Nov; 75(5):416-20. PubMed ID: 15592798 [TBL] [Abstract][Full Text] [Related]
13. Effects of nicotine on bone mass and strength in aged female rats. Akhter MP; Iwaniec UT; Haynatzki GR; Fung YK; Cullen DM; Recker RR J Orthop Res; 2003 Jan; 21(1):14-9. PubMed ID: 12507575 [TBL] [Abstract][Full Text] [Related]
14. Long-term serotonin administration leads to higher bone mineral density, affects bone architecture, and leads to higher femoral bone stiffness in rats. Gustafsson BI; Westbroek I; Waarsing JH; Waldum H; Solligård E; Brunsvik A; Dimmen S; van Leeuwen JP; Weinans H; Syversen U J Cell Biochem; 2006 Apr; 97(6):1283-91. PubMed ID: 16329113 [TBL] [Abstract][Full Text] [Related]
15. Adaptive modeling in a mammalian skeletal model system. Gordon KR; Levy C; Perl M; Weeks OI Growth Dev Aging; 1993; 57(2):101-10. PubMed ID: 8495992 [TBL] [Abstract][Full Text] [Related]
16. Geometric and material contributions to whole bone structural behavior in GDF-7-deficient mice. Maloul A; Rossmeier K; Mikic B; Pogue V; Battaglia T Connect Tissue Res; 2006; 47(3):157-62. PubMed ID: 16753809 [TBL] [Abstract][Full Text] [Related]
17. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
18. Human parathyroid hormone (1-34) and (1-84) increase the mechanical strength and thickness of cortical bone in rats. Ejersted C; Andreassen TT; Oxlund H; Jørgensen PH; Bak B; Häggblad J; Tørring O; Nilsson MH J Bone Miner Res; 1993 Sep; 8(9):1097-101. PubMed ID: 8237479 [TBL] [Abstract][Full Text] [Related]
19. Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. Brodt MD; Ellis CB; Silva MJ J Bone Miner Res; 1999 Dec; 14(12):2159-66. PubMed ID: 10620076 [TBL] [Abstract][Full Text] [Related]
20. Mechanical properties of femoral diaphysis and femoral neck of female rats chronically exposed to various levels of cadmium. Brzóska MM; Majewska K; Moniuszko-Jakoniuk J Calcif Tissue Int; 2005 Apr; 76(4):287-98. PubMed ID: 15742233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]