BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8267582)

  • 1. Time dependent changes in biophysical properties of minK channels expressed in Xenopus oocytes.
    Busch AE; Lang F
    Biochem Biophys Res Commun; 1993 Dec; 197(2):473-7. PubMed ID: 8267582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of lanthanum on voltage-dependent gating of a cloned mammalian neuronal potassium channel.
    Tytgat J; Daenens P
    Brain Res; 1997 Feb; 749(2):232-7. PubMed ID: 9138723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of [Ca2+]i and temperature on minK channels expressed in Xenopus oocytes.
    Busch AE; Lang F
    FEBS Lett; 1993 Nov; 334(2):221-4. PubMed ID: 8003103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of the Kv1.1 rat brain potassium channels expressed in mammalian cells: temperature effects.
    Moran O; Conti F
    Biochem Biophys Res Commun; 1995 Oct; 215(3):915-20. PubMed ID: 7488061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating of I(sK) channels expressed in Xenopus oocytes.
    Tzounopoulos T; Maylie J; Adelman JP
    Biophys J; 1998 May; 74(5):2299-305. PubMed ID: 9591657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium.
    Sesti F; Tai KK; Goldstein SA
    Biophys J; 2000 Sep; 79(3):1369-78. PubMed ID: 10968999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive regulation by chloride channel blockers of IsK channels expressed in Xenopus oocytes.
    Busch AE; Herzer T; Wagner CA; Schmidt F; Raber G; Waldegger S; Lang F
    Mol Pharmacol; 1994 Oct; 46(4):750-3. PubMed ID: 7969055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel.
    Sanguinetti MC; Curran ME; Zou A; Shen J; Spector PS; Atkinson DL; Keating MT
    Nature; 1996 Nov; 384(6604):80-3. PubMed ID: 8900283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of voltage sensitivity by N-terminal cytoplasmic residues in human Kv1.2 channels.
    Varshney A; S K; Mathew MK
    Eur Biophys J; 2002 Sep; 31(5):365-72. PubMed ID: 12202912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microheterogeneity in heteromultimeric assemblies formed by Shaker (Kv1) and Shaw (Kv3) subfamilies of voltage-gated K+ channels.
    Shahidullah M; Hoshi N; Yokoyama S; Higashida H
    Proc Biol Sci; 1995 Sep; 261(1362):309-17. PubMed ID: 8587873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-gated potassium channels of Schwann cells from trout lateral line nerve: a combined electrophysiological and molecular characterization.
    Rabe H; Ritz HJ; Jeserich G
    Glia; 1998 Aug; 23(4):329-38. PubMed ID: 9671963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of external acidosis on HERG current expressed in Xenopus oocytes.
    Terai T; Furukawa T; Katayama Y; Hiraoka M
    J Mol Cell Cardiol; 2000 Jan; 32(1):11-21. PubMed ID: 10652186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling between charge movement and pore opening in voltage dependent potassium channels.
    Stefani E
    Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney.
    Yao X; Chang AY; Boulpaep EL; Segal AS; Desir GV
    J Clin Invest; 1996 Jun; 97(11):2525-33. PubMed ID: 8647945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heteromultimeric channels formed by rat brain potassium-channel proteins.
    Ruppersberg JP; Schröter KH; Sakmann B; Stocker M; Sewing S; Pongs O
    Nature; 1990 Jun; 345(6275):535-7. PubMed ID: 2348860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-channel properties of IKs potassium channels.
    Yang Y; Sigworth FJ
    J Gen Physiol; 1998 Dec; 112(6):665-78. PubMed ID: 9834139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subunit composition of minK potassium channels.
    Wang KW; Goldstein SA
    Neuron; 1995 Jun; 14(6):1303-9. PubMed ID: 7605639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow inactivation conserved in heteromultimeric voltage-dependent K+ channels between Shaker (Kv1) and Shaw (Kv3) subfamilies.
    Shahidullah M; Hoshi N; Yokoyama S; Kawamura T; Higashida H
    FEBS Lett; 1995 Sep; 371(3):307-10. PubMed ID: 7556617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The minK potassium channel exists in functional and nonfunctional forms when expressed in the plasma membrane of Xenopus oocytes.
    Blumenthal EM; Kaczmarek LK
    J Neurosci; 1994 May; 14(5 Pt 2):3097-105. PubMed ID: 7514215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unilateral exposure of Shaker B potassium channels to hyperosmolar solutions.
    Starkus JG; Schlief T; Rayner MD; Heinemann SH
    Biophys J; 1995 Sep; 69(3):860-72. PubMed ID: 8519986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.