BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8268169)

  • 21. Structural changes of creatine kinase upon substrate binding.
    Forstner M; Kriechbaum M; Laggner P; Wallimann T
    Biophys J; 1998 Aug; 75(2):1016-23. PubMed ID: 9675202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and stability of octameric mitochondrial creatine kinase isoform from herring (Clupea harengus) organ of vision.
    Niedźwiecka N; Grzyb K; Nona-Mołdawa A; Gronczewska J; Skorkowski EF
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Jul; 185():16-23. PubMed ID: 25770046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues.
    Wendt S; Schlattner U; Wallimann T
    J Biol Chem; 2003 Jan; 278(2):1125-30. PubMed ID: 12401781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of oligomerization on the properties of essential SH-groups of mitochondrial creatine kinase].
    Fedosov SN; Belousova LV
    Biokhimiia; 1988 Apr; 53(4):550-64. PubMed ID: 3395637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of the mitochondrial creatine kinase octamer: high-resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions.
    Schnyder T; Gross H; Winkler H; Eppenberger HM; Wallimann T
    J Cell Biol; 1991 Jan; 112(1):95-101. PubMed ID: 1702444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactivation and refolding of reassociated dimers of rabbit muscle creatine kinase.
    Park YD; Huang K; Zhou HM
    J Protein Chem; 2000 Apr; 19(3):185-91. PubMed ID: 10981810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localization of reactive cysteine residues by maleidoyl undecagold in the mitochondrial creatine kinase octamer.
    Schnyder T; Tittmann P; Winkler H; Gross H; Wallimann T
    J Struct Biol; 1995; 114(3):209-17. PubMed ID: 7662488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic properties of the octameric and dimeric forms of mitochondrial creatine kinase and physiological role of the enzyme.
    Lipskaya TYu ; Trofimova ME; Moiseeva NS
    Biochem Int; 1989 Sep; 19(3):603-13. PubMed ID: 2818612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Conditions for reciprocal conversion of oligomeric forms of heart mitochondrial creatine kinase].
    Lipskaia TIu; Kedishvili NIu; Kalenova ME
    Biokhimiia; 1985 Oct; 50(10):1571-81. PubMed ID: 4074771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of human ubiquitous mitochondrial creatine kinase.
    Eder M; Fritz-Wolf K; Kabsch W; Wallimann T; Schlattner U
    Proteins; 2000 May; 39(3):216-25. PubMed ID: 10737943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional aspects of the X-ray structure of mitochondrial creatine kinase: a molecular physiology approach.
    Schlattner U; Forstner M; Eder M; Stachowiak O; Fritz-Wolf K; Wallimann T
    Mol Cell Biochem; 1998 Jul; 184(1-2):125-40. PubMed ID: 9746317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of an absolutely conserved tryptophan residue in octamer formation and stability in mitochondrial creatine kinases.
    Hoffman GG; Sona S; Bertin M; Ellington WR
    Biochim Biophys Acta; 2006 Sep; 1764(9):1512-7. PubMed ID: 16962834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The 2.1 A structure of Torpedo californica creatine kinase complexed with the ADP-Mg(2+)-NO(3)(-)-creatine transition-state analogue complex.
    Lahiri SD; Wang PF; Babbitt PC; McLeish MJ; Kenyon GL; Allen KN
    Biochemistry; 2002 Nov; 41(47):13861-7. PubMed ID: 12437342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Octameric mitochondrial and dimeric cytoplasmic creatine kinase. The number of subunits, participating in catalysis].
    Fedosov SN; Belousova LV
    Biokhimiia; 1989 Jan; 54(1):54-67. PubMed ID: 2719989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial creatine kinase isoform expression does not correlate with its mode of action.
    Anflous K; Veksler V; Mateo P; Samson F; Saks V; Ventura-Clapier R
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):73-8. PubMed ID: 9078245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oligomeric state and membrane binding behaviour of creatine kinase isoenzymes: implications for cellular function and mitochondrial structure.
    Stachowiak O; Schlattner U; Dolder M; Wallimann T
    Mol Cell Biochem; 1998 Jul; 184(1-2):141-51. PubMed ID: 9746318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An equilibrium study of the dependence of secondary and tertiary structure of creatine kinase on subunit association.
    Grossman SH
    Biochim Biophys Acta; 1994 Nov; 1209(1):19-23. PubMed ID: 7947978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure of mitochondrial creatine kinase and its membrane binding properties.
    Schnyder T; Rojo M; Furter R; Wallimann T
    Mol Cell Biochem; 1994; 133-134():115-23. PubMed ID: 7808449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases.
    Beutner G; Rück A; Riede B; Brdiczka D
    Biochim Biophys Acta; 1998 Jan; 1368(1):7-18. PubMed ID: 9459579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and characterization of human sarcomeric mitochondrial creatine kinase.
    Walterscheid-Müller U; Braun S; Salvenmoser W; Meffert G; Dapunt O; Gnaiger E; Zierz S; Margreiter R; Wyss M
    J Mol Cell Cardiol; 1997 Mar; 29(3):921-7. PubMed ID: 9152853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.