BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8268175)

  • 1. Isolation and kinetic characterization of the calmodulin methyltransferase from sheep brain.
    Han CH; Richardson J; Oh SH; Roberts DM
    Biochemistry; 1993 Dec; 32(50):13974-80. PubMed ID: 8268175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of calmodulin (lysine 115) N-methyltransferase from Paramecium tetraurelia.
    Pech LL; Nelson DL
    Biochim Biophys Acta; 1994 Mar; 1199(2):183-94. PubMed ID: 8123667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and properties of calmodulin-lysine N-methyltransferase from rat brain cytosol.
    Morino H; Kawamoto T; Miyake M; Kakimoto Y
    J Neurochem; 1987 Apr; 48(4):1201-8. PubMed ID: 3102693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered methylation substrate kinetics and calcium binding of a calmodulin with a Val136-->Thr substitution.
    Han CH; Roberts DM
    Eur J Biochem; 1997 Mar; 244(3):904-12. PubMed ID: 9108264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic methylation of calmodulin in rat brain cytosol.
    Sitaramayya A; Wright LS; Siegel FL
    J Biol Chem; 1980 Sep; 255(18):8894-900. PubMed ID: 6773954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin N-methyltransferase. Partial purification and characterization.
    Rowe PM; Wright LS; Siegel FL
    J Biol Chem; 1986 May; 261(15):7060-9. PubMed ID: 3700427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimethyllysine and protein function. Effect of methylation and mutagenesis of lysine 115 of calmodulin on NAD kinase activation.
    Roberts DM; Rowe PM; Siegel FL; Lukas TJ; Watterson DM
    J Biol Chem; 1986 Feb; 261(4):1491-4. PubMed ID: 3003072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calmodulin methyltransferase is an evolutionarily conserved enzyme that trimethylates Lys-115 in calmodulin.
    Magnani R; Dirk LM; Trievel RC; Houtz RL
    Nat Commun; 2010 Jul; 1():43. PubMed ID: 20975703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium affects the spontaneous degradation of aspartyl/asparaginyl residues in calmodulin.
    Ota IM; Clarke S
    Biochemistry; 1989 May; 28(9):4020-7. PubMed ID: 2502176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
    Yuan T; Weljie AM; Vogel HJ
    Biochemistry; 1998 Mar; 37(9):3187-95. PubMed ID: 9485473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific methionine oxidation in calmodulin affects structural integrity and interaction with Ca2+/calmodulin-dependent protein kinase II.
    Snijder J; Rose RJ; Raijmakers R; Heck AJ
    J Struct Biol; 2011 Apr; 174(1):187-95. PubMed ID: 21156208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posttranslational modification of calmodulin.
    Murtaugh TJ; Rowe PM; Vincent PL; Wright LS; Siegel FL
    Methods Enzymol; 1983; 102():158-70. PubMed ID: 6685812
    [No Abstract]   [Full Text] [Related]  

  • 13. Selective carboxyl methylation of structurally altered calmodulins in Xenopus oocytes.
    Desrosiers RR; Romanik EA; O'Connor CM
    J Biol Chem; 1990 Dec; 265(34):21368-74. PubMed ID: 2123492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progressive decline in the ability of calmodulin isolated from aged brain to activate the plasma membrane Ca-ATPase.
    Gao J; Yin D; Yao Y; Williams TD; Squier TC
    Biochemistry; 1998 Jun; 37(26):9536-48. PubMed ID: 9649337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of the calmodulin-dependent inhibition of the RyR1 calcium release channel upon oxidation of methionines in calmodulin.
    Boschek CB; Jones TE; Smallwood HS; Squier TC; Bigelow DJ
    Biochemistry; 2008 Jan; 47(1):131-42. PubMed ID: 18076146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gain of function mutations for yeast calmodulin and calcium dependent regulation of protein kinase activity.
    Lukas TJ; Collinge M; Haiech J; Watterson DM
    Biochim Biophys Acta; 1994 Sep; 1223(3):341-7. PubMed ID: 7918668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural requirements for N-trimethylation of lysine 115 of calmodulin.
    Cobb JA; Roberts DM
    J Biol Chem; 2000 Jun; 275(25):18969-75. PubMed ID: 10766755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stoichiometric methylation of calcineurin by protein carboxyl O-methyltransferase and its effects on calmodulin-stimulated phosphatase activity.
    Billingsley ML; Kincaid RL; Lovenberg W
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5612-6. PubMed ID: 2994037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro aging of calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domains II, III, and IV.
    Potter SM; Henzel WJ; Aswad DW
    Protein Sci; 1993 Oct; 2(10):1648-63. PubMed ID: 8251940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase.
    Sun H; Gao J; Ferrington DA; Biesiada H; Williams TD; Squier TC
    Biochemistry; 1999 Jan; 38(1):105-12. PubMed ID: 9890888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.