BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8268186)

  • 1. Selectivity of polyamines in triplex DNA stabilization.
    Thomas T; Thomas TJ
    Biochemistry; 1993 Dec; 32(50):14068-74. PubMed ID: 8268186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of cyclopolyamines on the stability and conformation of triplex DNA.
    Antony T; Musso M; Hosseini MW; Brand G; Greenfield NJ; Thomas T; Van Dyke MW; Thomas TJ
    Antisense Nucleic Acid Drug Dev; 1999 Feb; 9(1):13-23. PubMed ID: 10192285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity of spermine homologs on triplex DNA stabilization.
    Antony T; Thomas T; Shirahata A; Sigal LH; Thomas TJ
    Antisense Nucleic Acid Drug Dev; 1999 Apr; 9(2):221-31. PubMed ID: 10355828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic microenvironmental effects on triplex DNA stabilization: cationic counterion effects on poly(dT)·poly(dA)·poly(dT).
    Beck A; Vijayanathan V; Thomas T; Thomas TJ
    Biochimie; 2013 Jun; 95(6):1310-8. PubMed ID: 23454377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural specificity effects of trivalent polyamine analogues on the stabilization and conformational plasticity of triplex DNA.
    Thomas TJ; Kulkarni GD; Greenfield NJ; Shirahata A; Thomas T
    Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):591-9. PubMed ID: 8912699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity of polyamines on the stability of RNA-DNA hybrids containing phosphodiester and phosphorothioate oligodeoxyribonucleotides.
    Antony T; Thomas T; Shirahata A; Thomas TJ
    Biochemistry; 1999 Aug; 38(33):10775-84. PubMed ID: 10451373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triplex-DNA stabilization by hydralazine and the presence of anti-(triplex DNA) antibodies in patients treated with hydralazine.
    Thomas TJ; Seibold JR; Adams LE; Hess EV
    Biochem J; 1995 Oct; 311 ( Pt 1)(Pt 1):183-8. PubMed ID: 7575452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chain length modification and bis(ethyl) substitution of spermine analogs on purine-purine-pyrimidine triplex DNA stabilization, aggregation, and conformational transitions.
    Musso M; Thomas T; Shirahata A; Sigal LH; Van Dyke MW; Thomas TJ
    Biochemistry; 1997 Feb; 36(6):1441-9. PubMed ID: 9063892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrimidine-purine-pyrimidine triplex DNA stabilization in the presence of tetramine and pentamine analogues of spermine.
    Thomas TJ; Ashley C; Thomas T; Shirahata A; Sigal LH; Lee JS
    Biochem Cell Biol; 1997; 75(3):207-15. PubMed ID: 9404640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular beacon strategy for the thermodynamic characterization of triplex DNA: triplex formation at the promoter region of cyclin D1.
    Antony T; Thomas T; Sigal LH; Shirahata A; Thomas TJ
    Biochemistry; 2001 Aug; 40(31):9387-95. PubMed ID: 11478908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic and structural specificity effects of natural and synthetic polyamines on the aggregation and resolubilization of single-, double-, and triple-stranded DNA.
    Saminathan M; Antony T; Shirahata A; Sigal LH; Thomas T; Thomas TJ
    Biochemistry; 1999 Mar; 38(12):3821-30. PubMed ID: 10090772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoglycoside-nucleic acid interactions: remarkable stabilization of DNA and RNA triple helices by neomycin.
    Arya DP; Coffee RL; Willis B; Abramovitch AI
    J Am Chem Soc; 2001 Jun; 123(23):5385-95. PubMed ID: 11389616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(L-lysine)-graft-dextran copolymer is a novel stabilizer of triplex DNA (I): stabilization of poly(dA).2poly(dT) triplex.
    Maruyama A; Watanabe H; Ferdous A; Akaike T
    Nucleic Acids Symp Ser; 1997; (37):225-6. PubMed ID: 9586081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comb-type polycations effectively stabilize DNA triplex.
    Maruyama A; Katoh M; Ishihara T; Akaike T
    Bioconjug Chem; 1997; 8(1):3-6. PubMed ID: 9026028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamines favor DNA triplex formation at neutral pH.
    Hampel KJ; Crosson P; Lee JS
    Biochemistry; 1991 May; 30(18):4455-9. PubMed ID: 2021635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective and Robust Stabilization of Triplex DNA Structures Using Cationic Comb-type Copolymers.
    Yamayoshi A; Miyoshi D; Zouzumi YK; Matsuyama Y; Ariyoshi J; Shimada N; Murakami A; Wada T; Maruyama A
    J Phys Chem B; 2017 Apr; 121(16):4015-4022. PubMed ID: 28362093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides.
    Musso M; Van Dyke MW
    Nucleic Acids Res; 1995 Jun; 23(12):2320-7. PubMed ID: 7610062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counterion association with native and denatured nucleic acids: an experimental approach.
    Völker J; Klump HH; Manning GS; Breslauer KJ
    J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Berenil binding to higher ordered nucleic acid structures: complexation with a DNA and RNA triple helix.
    Pilch DS; Kirolos MA; Breslauer KJ
    Biochemistry; 1995 Dec; 34(49):16107-24. PubMed ID: 8519768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of backbone structure on polycation comb-type copolymer/DNA interactions and the molecular assembly of DNA.
    Sato Y; Kobayashi Y; Kamiya T; Watanabe H; Akaike T; Yoshikawa K; Maruyama A
    Biomaterials; 2005 Mar; 26(7):703-11. PubMed ID: 15350774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.