These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8268207)

  • 1. Estimation of stabilities of staphylococcal nuclease mutants (Met32-->Ala and Met32-->Leu) using molecular dynamics/free energy perturbation.
    Yamaotsu N; Moriguchi I; Hirono S
    Biochim Biophys Acta; 1993 Dec; 1203(2):243-50. PubMed ID: 8268207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study of the stability of staphylococcal nuclease mutants: component analysis of the free energy difference of denaturation.
    Yamaotsu N; Moriguchi I; Kollman PA; Hirono S
    Biochim Biophys Acta; 1993 Apr; 1163(1):81-8. PubMed ID: 8476933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The M32L substitution of staphylococcal nuclease: disagreement between theoretical prediction and experimental protein stability.
    Spencer DS; Stites WE
    J Mol Biol; 1996 Apr; 257(3):497-9. PubMed ID: 8648619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of mutations involving charged residues on the stability of staphylococcal nuclease: a continuum electrostatics study.
    Börjesson U; Hünenberger PH
    Protein Eng; 2003 Nov; 16(11):831-40. PubMed ID: 14631072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of side chain packing in staphylococcal nuclease assessed by exchange of valines, isoleucines, and leucines.
    Holder JB; Bennett AF; Chen J; Spencer DS; Byrne MP; Stites WE
    Biochemistry; 2001 Nov; 40(46):13998-4003. PubMed ID: 11705391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of side chain packing in staphylococcal nuclease assessed by systematic double mutant cycles.
    Chen J; Stites WE
    Biochemistry; 2001 Nov; 40(46):14004-11. PubMed ID: 11705392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in stability upon charge reversal and neutralization substitution in staphylococcal nuclease are dominated by favorable electrostatic effects.
    Schwehm JM; Fitch CA; Dang BN; García-Moreno E B; Stites WE
    Biochemistry; 2003 Feb; 42(4):1118-28. PubMed ID: 12549934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease.
    Shortle D; Abeygunawardana C
    Structure; 1993 Oct; 1(2):121-34. PubMed ID: 8069625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement of staphylococcal nuclease hydrophobic core residues with those from thermophilic homologues indicates packing is improved in some thermostable proteins.
    Chen J; Stites WE
    J Mol Biol; 2004 Nov; 344(1):271-80. PubMed ID: 15504416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-state thermodynamic analysis of the denaturation of staphylococcal nuclease mutants.
    Carra JH; Anderson EA; Privalov PL
    Biochemistry; 1994 Sep; 33(35):10842-50. PubMed ID: 8075087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core.
    Stites WE; Gittis AG; Lattman EE; Shortle D
    J Mol Biol; 1991 Sep; 221(1):7-14. PubMed ID: 1920420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic contribution of side chain hydrogen bonding to the stability of staphylococcal nuclease.
    Byrne MP; Manuel RL; Lowe LG; Stites WE
    Biochemistry; 1995 Oct; 34(42):13949-60. PubMed ID: 7577991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal denaturations of staphylococcal nuclease wild-type and mutants monitored by fluorescence and circular dichroism are similar: lack of evidence for other than a two state thermal denaturation.
    Byrne MP; Stites WE
    Biophys Chem; 2007 Feb; 125(2-3):490-6. PubMed ID: 17134819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability mutants of staphylococcal nuclease: large compensating enthalpy-entropy changes for the reversible denaturation reaction.
    Shortle D; Meeker AK; Freire E
    Biochemistry; 1988 Jun; 27(13):4761-8. PubMed ID: 3167015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein stability for single substitution mutants and the extent of local compactness in the denatured state.
    Miyazawa S; Jernigan RL
    Protein Eng; 1994 Oct; 7(10):1209-20. PubMed ID: 7855136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of Glu75 of staphylococcal nuclease on enzyme activity, protein stability and protein unfolding.
    Chen HM; Dimagno TJ; Wang W; Leung E; Lee CH; Chan SI
    Eur J Biochem; 1999 May; 261(3):599-609. PubMed ID: 10215875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorometric study of the acid-induced denaturation of Staphylococcal nuclease and its mutant forms.
    Tanaka A
    Biosci Biotechnol Biochem; 2004 Jun; 68(6):1293-8. PubMed ID: 15215594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of information encoded in tryptophan 140 of staphylococcal nuclease.
    Hirano S; Kamikubo H; Yamazaki Y; Kataoka M
    Proteins; 2005 Feb; 58(2):271-7. PubMed ID: 15573380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.