These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8268404)

  • 1. [Stress measurements with an instrumented internal spinal fixator].
    Rohlmann A; Eick O; Bergmann G; Graichen F
    Biomed Tech (Berl); 1993 Oct; 38(10):255-9. PubMed ID: 8268404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [In-vitro measurement of loading using an instrumented vertebral internal fixator].
    Rohlmann A; Eick O; Bergmann G; Graichen F
    Z Orthop Ihre Grenzgeb; 1995; 133(2):136-40. PubMed ID: 7754660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomechanical analysis of an instrumented spinal fixator under torsional loads.
    Alkalay RN; Sharpe D; Bader DL
    J Biomech; 2005 Apr; 38(4):865-76. PubMed ID: 15713308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Loading on internal spinal fixation devices].
    Rohlmann A; Bergmann G; Graichen F; Weber U
    Orthopade; 1999 May; 28(5):451-7. PubMed ID: 10394604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro fixator rod loading after transforaminal compared to anterior lumbar interbody fusion.
    Kettler A; Niemeyer T; Issler L; Merk U; Mahalingam M; Werner K; Claes L; Wilke HJ
    Clin Biomech (Bristol); 2006 Jun; 21(5):435-42. PubMed ID: 16442678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column.
    Rohlmann A; Gabel U; Graichen F; Bender A; Bergmann G
    Med Eng Phys; 2007 Jun; 29(5):580-5. PubMed ID: 16931099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system.
    Wilke HJ; Heuer F; Schmidt H
    Spine (Phila Pa 1976); 2009 Feb; 34(3):255-61. PubMed ID: 19179920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of a new total posterior-element replacement system.
    Wilke HJ; Schmidt H; Werner K; Schmölz W; Drumm J
    Spine (Phila Pa 1976); 2006 Nov; 31(24):2790-6; discussion 2797. PubMed ID: 17108830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator.
    Wilke HJ; Rohlmann A; Neller S; Schultheiss M; Bergmann G; Graichen F; Claes LE
    Spine (Phila Pa 1976); 2001 Mar; 26(6):636-42. PubMed ID: 11246374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2000 Volvo Award winner in biomechanical studies: Monitoring in vivo implant loads with a telemeterized internal spinal fixation device.
    Rohlmann A; Graichen F; Weber U; Bergmann G
    Spine (Phila Pa 1976); 2000 Dec; 25(23):2981-6. PubMed ID: 11145808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of the Hartshill system for the internal fixation of spinal fractures and tumors.
    Dove J
    Acta Orthop Belg; 1991; 57 Suppl 1():163-4. PubMed ID: 1927336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loads on a telemeterized vertebral body replacement measured in three patients within the first postoperative month.
    Rohlmann A; Graichen F; Bender A; Kayser R; Bergmann G
    Clin Biomech (Bristol); 2008 Feb; 23(2):147-58. PubMed ID: 17983694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro biomechanics of an expandable vertebral body replacement with self-adjusting end plates.
    Buttermann GR; Freeman AL; Beaubien BP
    Spine J; 2010 Nov; 10(11):1024-31. PubMed ID: 20970741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new stand-alone cervical anterior interbody fusion device: biomechanical comparison with established anterior cervical fixation devices.
    Scholz M; Reyes PM; Schleicher P; Sawa AG; Baek S; Kandziora F; Marciano FF; Crawford NR
    Spine (Phila Pa 1976); 2009 Jan; 34(2):156-60. PubMed ID: 19139665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data.
    Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ
    J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical analysis of the Cotrel-Dubousset spine internal fixator in different load conditions.
    Guglielmino E; La Rosa G; Russo TC
    Biomed Mater Eng; 1993; 3(1):33-42. PubMed ID: 8490533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the loads on an internal spinal fixator after iliac-crest autograft.
    Rohlmann A; Bergmann G; Graichen F; Weber U
    J Bone Joint Surg Br; 2000 Apr; 82(3):445-9. PubMed ID: 10813187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of screw positioning in a new anterior spine fixator on implant loosening in osteoporotic vertebrae.
    Reinhold M; Schwieger K; Goldhahn J; Linke B; Knop C; Blauth M
    Spine (Phila Pa 1976); 2006 Feb; 31(4):406-13. PubMed ID: 16481950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biomechanics of long versus short fixation for thoracolumbar spine fractures.
    McLain RF
    Spine (Phila Pa 1976); 2006 May; 31(11 Suppl):S70-9; discussion S104. PubMed ID: 16685240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical performance of the new BeadEx implant in the treatment of osteoporotic vertebral body compression fractures: restoration and maintenance of height and stability.
    Kettler A; Schmoelz W; Shezifi Y; Ohana N; Ben-Arye A; Claes L; Wilke HJ
    Clin Biomech (Bristol); 2006 Aug; 21(7):676-82. PubMed ID: 16567025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.