BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8268406)

  • 1. Studies of DNA dumbbells. V. A DNA triplex formed between a 28 base-pair DNA dumbbell substrate and a 16 base linear single strand.
    Paner TM; Gallo FJ; Doktycz MJ; Benight AS
    Biopolymers; 1993 Dec; 33(12):1779-89. PubMed ID: 8268406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of DNA dumbbells. IV. Preparation and melting of a DNA dumbbell with the 16 base-pair sequence 5'G-T-A-T-C-C-C-T-C-T-G-G-A-T-A-C3' linked on the ends by dodecyl chains.
    Doktycz MJ; Paner TM; Benight AS
    Biopolymers; 1993 Dec; 33(12):1765-77. PubMed ID: 8268405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of DNA dumbbells. II. Construction and characterization of DNA dumbbells with a 16 base-pair duplex stem and Tn end loops (n = 2, 3, 4, 6, 8, 10, 14).
    Amaratunga M; Snowden-Ifft E; Wemmer DE; Benight AS
    Biopolymers; 1992 Jul; 32(7):865-79. PubMed ID: 1391635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of DNA dumbbells. III. Theoretical analysis of optical melting curves of dumbbells with a 16 base-pair duplex stem and Tn end loops (n = 2, 3, 4, 6, 8, 10, 14).
    Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1992 Jul; 32(7):881-92. PubMed ID: 1391636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of DNA dumbbells. I. Melting curves of 17 DNA dumbbells with different duplex stem sequences linked by T4 endloops: evaluation of the nearest-neighbor stacking interactions in DNA.
    Doktycz MJ; Goldstein RF; Paner TM; Gallo FJ; Benight AS
    Biopolymers; 1992 Jul; 32(7):849-64. PubMed ID: 1391634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic stability of the 5' dangling-ended DNA hairpins formed from sequences 5'-(XY)2GGATAC(T)4GTATCC-3', where X, Y = A, T, G, C.
    Doktycz MJ; Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1990; 30(7-8):829-45. PubMed ID: 2275982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-stranded (triplex) DNAs (RNAs): do they have a role in biology?
    Morgan AR
    Indian J Biochem Biophys; 1994 Apr; 31(2):83-7. PubMed ID: 7523282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA triplex formed by d-A-(G-A)7-G and d-mC-(T-mC)7-T in aqueous solution at neutral pH.
    Lin SB; Kao CF; Lee SC; Kan LS
    Anticancer Drug Des; 1994 Feb; 9(1):1-8. PubMed ID: 8141963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior.
    Manzini G; Xodo LE; Gasparotto D; Quadrifoglio F; van der Marel GA; van Boom JH
    J Mol Biol; 1990 Jun; 213(4):833-43. PubMed ID: 2359124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and thermodynamic characterization of DNA duplex-hairpin interconversion for two DNA decamers: d(CAACGGGTTG) and d(CAACCCGTTG).
    Avizonis DZ; Kearns DR
    Biopolymers; 1995 Feb; 35(2):187-200. PubMed ID: 7696564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melting of oligodeoxynucleotides with various structures.
    Naritsin DB; Lyubchenko YuL
    J Biomol Struct Dyn; 1991 Feb; 8(4):813-25. PubMed ID: 2059341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of the hairpin to mismatched duplex transition of d(GCCGCAGC) on NaCl solution.
    Garcia AE; Gupta G; Soumpasis DM; Tung CS
    J Biomol Struct Dyn; 1990 Aug; 8(1):173-86. PubMed ID: 2275792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure.
    Svinarchuk F; Monnot M; Merle A; Malvy C; Fermandjian S
    Nucleic Acids Res; 1995 Oct; 23(19):3831-6. PubMed ID: 7479024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An intramolecular triplex structure from non-mirror repeated sequence containing both Py:Pu.Py and Pu:Pu.Py triads.
    Klysik J
    J Mol Biol; 1995 Feb; 245(5):499-507. PubMed ID: 7844822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilities of double- and triple-strand helical nucleic acids.
    Cheng YK; Pettitt BM
    Prog Biophys Mol Biol; 1992; 58(3):225-57. PubMed ID: 1380719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverted repeat sequences can influence the melting transitions of linear DNAs.
    McCampbell CR; Wartell RM; Plaskon RR
    Biopolymers; 1989 Oct; 28(10):1745-58. PubMed ID: 2597728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics and structures of DNA: long-range effects of a 16 base-pair (CG)8 sequence on secondary structure.
    Kim US; Fujimoto BS; Furlong CE; Sundstrom JA; Humbert R; Teller DC; Schurr JM
    Biopolymers; 1993 Nov; 33(11):1725-45. PubMed ID: 8241430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV spectroscopic identification and thermodynamic analysis of protonated third strand deoxycytidine residues at neutrality in the triplex d(C(+)-T)6:[d(A-G)6.d(C-T)6]; evidence for a proton switch.
    Lavelle L; Fresco JR
    Nucleic Acids Res; 1995 Jul; 23(14):2692-705. PubMed ID: 7651830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of B-Z junction formation in a sixteen base-pair duplex DNA.
    Doktycz MJ; Benight AS; Sheardy RD
    J Mol Biol; 1990 Mar; 212(1):3-6. PubMed ID: 2319599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.