These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8268407)
1. A conformational study of the dehydroalanine: dipeptide and homopolypeptide. Alemán C; Perez JJ Biopolymers; 1993 Dec; 33(12):1811-7. PubMed ID: 8268407 [TBL] [Abstract][Full Text] [Related]
2. Synthetic and conformational studies on dehydroalanine-containing model peptides. Gupta A; Chauhan VS Biopolymers; 1990; 30(3-4):395-403. PubMed ID: 2279071 [TBL] [Abstract][Full Text] [Related]
3. Predicted conformation of poly(dehydroalanine): a preference for turns. Fábián P; Chauhan VS; Pongor S Biochim Biophys Acta; 1994 Sep; 1208(1):89-93. PubMed ID: 8086444 [TBL] [Abstract][Full Text] [Related]
4. Effect of the environment and role of the pi-pi stacking interactions in the stabilization of the 3(10)-helix conformation in dehydroalanine oligopeptides. Alemän C Int J Pept Protein Res; 1995 Nov; 46(5):408-18. PubMed ID: 8567185 [TBL] [Abstract][Full Text] [Related]
5. Structural and conformational properties of (Z)-beta-(1-naphthyl)- dehydroalanine residue. Inai Y; Oshikawa T; Yamashita M; Hirabayashi T; Hirako T Biopolymers; 2001 Jan; 58(1):9-19. PubMed ID: 11072225 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study. Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952 [TBL] [Abstract][Full Text] [Related]
7. Conformational analysis of XA and AX dipeptides in water by electronic circular dichroism and 1H NMR spectroscopy. Hagarman A; Measey T; Doddasomayajula RS; Dragomir I; Eker F; Griebenow K; Schweitzer-Stenner R J Phys Chem B; 2006 Apr; 110(13):6979-86. PubMed ID: 16571011 [TBL] [Abstract][Full Text] [Related]
8. Conformation dependence of the CalphaDalpha stretch mode in peptides. 1. Isolated alanine peptide structures. Mirkin NG; Krimm S J Phys Chem A; 2007 Jun; 111(24):5300-3. PubMed ID: 17530828 [TBL] [Abstract][Full Text] [Related]
9. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
10. Conformation of aminosuccinyl dipeptides Ac-L-X-L-Asu-NMe from empirical energy calculations. Capasso S; Mattia CA; Mazzarella L; Sica F; Zagari A Pept Res; 1992; 5(6):325-30. PubMed ID: 1493359 [TBL] [Abstract][Full Text] [Related]
11. Peptide models. XXXIII. Extrapolation of low-level Hartree-Fock data of peptide conformation to large basis set SCF, MP2, DFT, and CCSD(T) results. The Ramachandran surface of alanine dipeptide computed at various levels of theory. Perczel A; Farkas O; Jákli I; Topol IA; Csizmadia IG J Comput Chem; 2003 Jul; 24(9):1026-42. PubMed ID: 12759903 [TBL] [Abstract][Full Text] [Related]
12. Alpha/3(10)-helix transitions in alpha-methylalanine homopeptides: conformational transition pathway and potential of mean force. Huston SE; Marshall GR Biopolymers; 1994 Jan; 34(1):75-90. PubMed ID: 8110969 [TBL] [Abstract][Full Text] [Related]
13. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests. Roterman IK; Lambert MH; Gibson KD; Scheraga HA J Biomol Struct Dyn; 1989 Dec; 7(3):421-53. PubMed ID: 2627294 [TBL] [Abstract][Full Text] [Related]
14. Conformational preferences and cis-trans isomerization of L-lactic acid residue. Kang YK; Byun BJ J Phys Chem B; 2008 Jul; 112(30):9126-34. PubMed ID: 18605682 [TBL] [Abstract][Full Text] [Related]
15. Conformational preferences of proline analogues with different ring size. Jhon JS; Kang YK J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495 [TBL] [Abstract][Full Text] [Related]
17. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water. Wang ZX; Duan Y J Comput Chem; 2004 Nov; 25(14):1699-716. PubMed ID: 15362127 [TBL] [Abstract][Full Text] [Related]
18. Conformational preferences and cis-trans isomerization of azaproline residue. Kang YK; Byun BJ J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267 [TBL] [Abstract][Full Text] [Related]
19. Assessing the reliability of density functional methods in the conformational study of polypeptides: the treatment of intraresidue nonbonding interactions. Improta R; Barone V J Comput Chem; 2004 Aug; 25(11):1333-41. PubMed ID: 15185326 [TBL] [Abstract][Full Text] [Related]
20. Helix-coil transition of alanine peptides in water: force field dependence on the folded and unfolded structures. Gnanakaran S; García AE Proteins; 2005 Jun; 59(4):773-82. PubMed ID: 15815975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]