BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8268407)

  • 1. A conformational study of the dehydroalanine: dipeptide and homopolypeptide.
    Alemán C; Perez JJ
    Biopolymers; 1993 Dec; 33(12):1811-7. PubMed ID: 8268407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic and conformational studies on dehydroalanine-containing model peptides.
    Gupta A; Chauhan VS
    Biopolymers; 1990; 30(3-4):395-403. PubMed ID: 2279071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicted conformation of poly(dehydroalanine): a preference for turns.
    Fábián P; Chauhan VS; Pongor S
    Biochim Biophys Acta; 1994 Sep; 1208(1):89-93. PubMed ID: 8086444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the environment and role of the pi-pi stacking interactions in the stabilization of the 3(10)-helix conformation in dehydroalanine oligopeptides.
    Alemän C
    Int J Pept Protein Res; 1995 Nov; 46(5):408-18. PubMed ID: 8567185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and conformational properties of (Z)-beta-(1-naphthyl)- dehydroalanine residue.
    Inai Y; Oshikawa T; Yamashita M; Hirabayashi T; Hirako T
    Biopolymers; 2001 Jan; 58(1):9-19. PubMed ID: 11072225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study.
    Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C
    Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational analysis of XA and AX dipeptides in water by electronic circular dichroism and 1H NMR spectroscopy.
    Hagarman A; Measey T; Doddasomayajula RS; Dragomir I; Eker F; Griebenow K; Schweitzer-Stenner R
    J Phys Chem B; 2006 Apr; 110(13):6979-86. PubMed ID: 16571011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational properties of N-acetyl-L-alanine N',N'-dimethylamide.
    Siodłak D; Rzeszotarska B; Broda MA
    Acta Biochim Pol; 2004; 51(1):137-43. PubMed ID: 15094834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation dependence of the CalphaDalpha stretch mode in peptides. 1. Isolated alanine peptide structures.
    Mirkin NG; Krimm S
    J Phys Chem A; 2007 Jun; 111(24):5300-3. PubMed ID: 17530828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation of aminosuccinyl dipeptides Ac-L-X-L-Asu-NMe from empirical energy calculations.
    Capasso S; Mattia CA; Mazzarella L; Sica F; Zagari A
    Pept Res; 1992; 5(6):325-30. PubMed ID: 1493359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide models. XXXIII. Extrapolation of low-level Hartree-Fock data of peptide conformation to large basis set SCF, MP2, DFT, and CCSD(T) results. The Ramachandran surface of alanine dipeptide computed at various levels of theory.
    Perczel A; Farkas O; Jákli I; Topol IA; Csizmadia IG
    J Comput Chem; 2003 Jul; 24(9):1026-42. PubMed ID: 12759903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha/3(10)-helix transitions in alpha-methylalanine homopeptides: conformational transition pathway and potential of mean force.
    Huston SE; Marshall GR
    Biopolymers; 1994 Jan; 34(1):75-90. PubMed ID: 8110969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests.
    Roterman IK; Lambert MH; Gibson KD; Scheraga HA
    J Biomol Struct Dyn; 1989 Dec; 7(3):421-53. PubMed ID: 2627294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational preferences and cis-trans isomerization of L-lactic acid residue.
    Kang YK; Byun BJ
    J Phys Chem B; 2008 Jul; 112(30):9126-34. PubMed ID: 18605682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational preferences of proline analogues with different ring size.
    Jhon JS; Kang YK
    J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational properties of N-acetyl-N-methyl-alpha,beta-dehydroalanine N'-methylamide.
    Macedowska A; Siodłak D; Rzeszotarska B
    Acta Biochim Pol; 2006; 53(1):227-32. PubMed ID: 16528414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water.
    Wang ZX; Duan Y
    J Comput Chem; 2004 Nov; 25(14):1699-716. PubMed ID: 15362127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational preferences and cis-trans isomerization of azaproline residue.
    Kang YK; Byun BJ
    J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the reliability of density functional methods in the conformational study of polypeptides: the treatment of intraresidue nonbonding interactions.
    Improta R; Barone V
    J Comput Chem; 2004 Aug; 25(11):1333-41. PubMed ID: 15185326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.