These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 8268530)

  • 1. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.
    Yamamoto T; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2008; 11(4):238-40. PubMed ID: 19184291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device.
    Okamoto E; Yamamoto Y; Akasaka Y; Motomura T; Mitamura Y; Nosé Y
    Artif Organs; 2009 Aug; 33(8):622-6. PubMed ID: 19769776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo testing of a completely implanted total artificial heart system.
    Snyder AJ; Rosenberg G; Weiss WJ; Ford SK; Nazarian RA; Hicks DL; Marlotte JA; Kawaguchi O; Prophet GA; Sapirstein JS
    ASAIO J; 1993; 39(3):M177-84. PubMed ID: 8268524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transcutaneous optical information transmission system for implantable motor-driven artificial hearts.
    Mitamura Y; Okamoto E; Mikami T
    ASAIO Trans; 1990; 36(3):M278-80. PubMed ID: 2252677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent Li ion battery management based on a digital signal processor for a moving actuator total artificial heart.
    Kim WE; Ahn JM; Choi SW; Min BG
    ASAIO J; 1997; 43(5):M588-92. PubMed ID: 9360113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an implantable motor-driven assist pump system.
    Mitamura Y; Okamoto E; Hirano A; Mikami T
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):146-56. PubMed ID: 2312139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transmission across intact skin for powering artificial internal organs.
    Sherman C; Clay W; Dasse K; Daly B
    Trans Am Soc Artif Intern Organs; 1981; 27():137-41. PubMed ID: 7331067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.
    Shiba K; Nukaya M; Tsuji T; Koshiji K
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):205-13. PubMed ID: 18232363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of unifying transcutaneous transformer for transmission of energy and information.
    Tamura N; Yamamoto T; Aoki H; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2009; 12(2):138-40. PubMed ID: 19536632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new transcutaneous bidirectional communication for monitoring implanted artificial heart using the human body as a conductive medium.
    Okamoto E; Kato Y; Seino K; Miura H; Shiraishi Y; Yambe T; Mitamura Y
    Artif Organs; 2012 Oct; 36(10):852-8. PubMed ID: 22812488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular capsule for telemetric monitoring of blood pressure.
    Schmitz-Rode T; Schnakenberg U; Pfeffer JG; Piroth W; Vom Bögel G; Mokwa W; Günther RW
    Rofo; 2003 Feb; 175(2):282-6. PubMed ID: 12584632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive transcutaneous power delivery for an artificial anal sphincter system.
    Zan P; Yan G; Liu H; Luo N; Zhao Y
    J Med Eng Technol; 2009; 33(2):136-41. PubMed ID: 19085203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A solar cell system for extension of battery run time in a moving actuator total artificial heart.
    Ahn JM; Kim WE; Choi SW; Min BG; Kim WG
    ASAIO J; 1997; 43(5):M673-6. PubMed ID: 9360131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functions for detecting malposition of transcutaneous energy transmission coils.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Mochizuki S; Ishimaru M; Takiura K; Baba A; Toyama T; Imachi K
    ASAIO J; 2003; 49(4):469-74. PubMed ID: 12918593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary study of a new type of energy transmission system for artificial hearts.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Ono T; Kouno A; Ishimaru M; Mochizuki S; Takiura K; Baba A; Toyama T; Imachi K
    J Artif Organs; 2003; 6(1):14-9. PubMed ID: 14598119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantable control, telemetry, and solar energy system in the moving actuator type total artificial heart.
    Ahn JM; Lee JH; Choi SW; Kim WE; Omn KS; Park SK; Kim WG; Roh JR; Min BG
    Artif Organs; 1998 Mar; 22(3):250-9. PubMed ID: 9527287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A moving-actuator type electromechanical total artificial heart--Part II: Circular type and animal experiment.
    Min BG; Kim HC; Choi JW; Ryu GH; Seo KP; Rho JR; Ahn H; Kim SW; Diegel PD; Olsen DB
    IEEE Trans Biomed Eng; 1990 Dec; 37(12):1195-200. PubMed ID: 2289793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel low temperature transcutaneous energy transfer system suitable for high power implantable medical devices: performance and validation in sheep.
    Dissanayake TD; Budgett DM; Hu P; Bennet L; Pyner S; Booth L; Amirapu S; Wu Y; Malpas SC
    Artif Organs; 2010 May; 34(5):E160-7. PubMed ID: 20633146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.