These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 8268592)
1. Comparison of the cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds. Sung HW; Shen SH; Tu R; Lin D; Hata C; Noishiki Y; Tomizawa Y; Quijano RC ASAIO J; 1993; 39(3):M532-6. PubMed ID: 8268592 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a polyepoxy compound fixed porcine heart valve bioprosthesis. Shen SH; Sung HW; Tu R; Hata C; Lin D; Noishiki Y; Quijano RC J Appl Biomater; 1994; 5(2):159-62. PubMed ID: 10147176 [TBL] [Abstract][Full Text] [Related]
3. Porcine aortic wall flexibility. Fresh vs Denacol fixed vs glutaraldehyde fixed. Zhou J; Quintero LJ; Helmus MN; Lee C; Kafesjian R ASAIO J; 1997; 43(5):M470-5. PubMed ID: 9360087 [TBL] [Abstract][Full Text] [Related]
4. Biological materials fixed with an epoxy compound: comparison of the effects with or without ionically bound heparin. Sung HW; Shih JS J Appl Biomater; 1995; 6(3):185-90. PubMed ID: 7492809 [TBL] [Abstract][Full Text] [Related]
5. Amide cross-linking: an alternative to glutaraldehyde fixation. Girardot JM; Girardot MN J Heart Valve Dis; 1996 Sep; 5(5):518-25. PubMed ID: 8894992 [TBL] [Abstract][Full Text] [Related]
6. Glutaraldehyde detoxification in addition to enhanced amine cross-linking dramatically reduces bioprosthetic tissue calcification in the rat model. Weissenstein C; Human P; Bezuidenhout D; Zilla P J Heart Valve Dis; 2000 Mar; 9(2):230-40. PubMed ID: 10772041 [TBL] [Abstract][Full Text] [Related]
7. Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: an ultrastructural study. Simionescu DT; Lovekamp JJ; Vyavahare NR J Heart Valve Dis; 2003 Mar; 12(2):226-34. PubMed ID: 12701796 [TBL] [Abstract][Full Text] [Related]
8. A newly developed porcine heart valve bioprosthesis fixed with an epoxy compound. An experimental evaluation. Sung HW; Tu R; Shen SH; Witzel TH; Lin D; Hata C; Kingsbury CJ; Noishiki Y; Tomizawa Y; Quijano RC ASAIO J; 1994; 40(2):192-8. PubMed ID: 8003758 [TBL] [Abstract][Full Text] [Related]
9. Prevention of tissue calcification on bioprosthetic heart valve by using epoxy compounds: a study of calcification tests in vitro and in vivo. Xi T; Ma J; Tian W; Lei X; Long S; Xi B J Biomed Mater Res; 1992 Sep; 26(9):1241-51. PubMed ID: 1429769 [TBL] [Abstract][Full Text] [Related]
10. Hydrodynamic characteristics of porcine aortic valves cross-linked with glutaraldehyde and polyepoxy compounds. Soda A; Tanaka R; Saida Y; Takashima K; Hirayama T; Umezu M; Yamane Y ASAIO J; 2009; 55(1):13-8. PubMed ID: 19092670 [TBL] [Abstract][Full Text] [Related]
11. Porcine aortic valve bioprostheses: morphologic and functional considerations. Hilbert SL; Ferrans VJ J Long Term Eff Med Implants; 1992; 2(2-3):99-112. PubMed ID: 10148319 [TBL] [Abstract][Full Text] [Related]
12. Diamine-extended glutaraldehyde- and carbodiimide crosslinks act synergistically in mitigating bioprosthetic aortic wall calcification. Zilla P; Bezuidenhout D; Torrianni M; Hendriks M; Human P J Heart Valve Dis; 2005 Jul; 14(4):538-45. PubMed ID: 16116882 [TBL] [Abstract][Full Text] [Related]
13. A comparison between glutaraldehyde and diepoxide-fixed stentless porcine aortic valves: biochemical and mechanical characterization and resistance to mineralization. Myers DJ; Nakaya G; Girardot MN; Christie GW J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S98-101. PubMed ID: 8581221 [TBL] [Abstract][Full Text] [Related]
14. Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves. Simionescu DT; Lovekamp JJ; Vyavahare NR J Biomed Mater Res A; 2003 Sep; 66(4):755-63. PubMed ID: 12926026 [TBL] [Abstract][Full Text] [Related]
15. The influence of sizing and method of fixation on the hydrodynamic function of stentless, free-hand inserted porcine bioprosthesis: an in vitro study. Revanna P; Fisher J; Watterson KG J Heart Valve Dis; 1997 Jul; 6(4):433-8. PubMed ID: 9263877 [TBL] [Abstract][Full Text] [Related]
16. The influence of stenting on the behavior of amino-oleic acid-treated, glutaraldehyde-fixed porcine aortic valves in a sheep model. Ozaki S; Herijgers P; Verbeken E; Van Lommel A; Nishida T; Perek B; Zietkiewicz M; Leunens V; Flameng W J Heart Valve Dis; 2000 Jul; 9(4):552-9; discussion 559-60. PubMed ID: 10947049 [TBL] [Abstract][Full Text] [Related]
17. [Hemodynamic performance of newly developed composite stentless porcine aortic valve: in vitro testing and in vivo experiment with sheep]. Song GM; Zhou JY; Hu SS; Cui JW; Song YH; Tang Y; Zhang Y; Jiang H; Yuan WM; Song XY Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(29):2059-63. PubMed ID: 19080436 [TBL] [Abstract][Full Text] [Related]
18. Crosslinking characteristics of porcine tendons: effects of fixation with glutaraldehyde or epoxy. Sung HW; Shih JS; Hsu CS J Biomed Mater Res; 1996 Mar; 30(3):361-7. PubMed ID: 8698699 [TBL] [Abstract][Full Text] [Related]
19. Role of glutaraldehyde in calcification of porcine heart valves: comparing cusp and wall. Girardot MN; Torrianni M; Dillehay D; Girardot JM J Biomed Mater Res; 1995 Jul; 29(7):793-801. PubMed ID: 7593017 [TBL] [Abstract][Full Text] [Related]
20. Ethanol inhibition of porcine bioprosthetic heart valve cusp calcification is enhanced by reduction with sodium borohydride. Connolly JM; Alferiev I; Kronsteiner A; Lu Z; Levy RJ J Heart Valve Dis; 2004 May; 13(3):487-93. PubMed ID: 15222297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]