BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8268592)

  • 1. Comparison of the cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds.
    Sung HW; Shen SH; Tu R; Lin D; Hata C; Noishiki Y; Tomizawa Y; Quijano RC
    ASAIO J; 1993; 39(3):M532-6. PubMed ID: 8268592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological materials fixed with an epoxy compound: comparison of the effects with or without ionically bound heparin.
    Sung HW; Shih JS
    J Appl Biomater; 1995; 6(3):185-90. PubMed ID: 7492809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A newly developed porcine heart valve bioprosthesis fixed with an epoxy compound. An experimental evaluation.
    Sung HW; Tu R; Shen SH; Witzel TH; Lin D; Hata C; Kingsbury CJ; Noishiki Y; Tomizawa Y; Quijano RC
    ASAIO J; 1994; 40(2):192-8. PubMed ID: 8003758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention of tissue calcification on bioprosthetic heart valve by using epoxy compounds: a study of calcification tests in vitro and in vivo.
    Xi T; Ma J; Tian W; Lei X; Long S; Xi B
    J Biomed Mater Res; 1992 Sep; 26(9):1241-51. PubMed ID: 1429769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison between glutaraldehyde and diepoxide-fixed stentless porcine aortic valves: biochemical and mechanical characterization and resistance to mineralization.
    Myers DJ; Nakaya G; Girardot MN; Christie GW
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S98-101. PubMed ID: 8581221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glutaraldehyde in calcification of porcine heart valves: comparing cusp and wall.
    Girardot MN; Torrianni M; Dillehay D; Girardot JM
    J Biomed Mater Res; 1995 Jul; 29(7):793-801. PubMed ID: 7593017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 2-amino oleic acid exposure conditions on the inhibition of calcification of glutaraldehyde cross-linked porcine aortic valves.
    Chen W; Kim JD; Schoen FJ; Levy RJ
    J Biomed Mater Res; 1994 Dec; 28(12):1485-95. PubMed ID: 7876288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets.
    Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ
    J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of fixation back pressure and antimineralization treatment on the morphology of porcine aortic bioprosthetic valves.
    Flomenbaum MA; Schoen FJ
    J Thorac Cardiovasc Surg; 1993 Jan; 105(1):154-64. PubMed ID: 8419696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of the mechanical properties of leaflets from four second-generation porcine bioprostheses with biaxial testing techniques.
    Mayne AS; Christie GW; Smaill BH; Hunter PJ; Barratt-Boyes BG
    J Thorac Cardiovasc Surg; 1989 Aug; 98(2):170-80. PubMed ID: 2755150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of glutaraldehyde-preserved porcine xenografts and fresh or glutaraldehyde-treated human aortic valves by holographic interferometry.
    Geiger AW; Zarubin AM; Deiwick M; Asfour B; Fahrenkamp A; Hertel M; von Bally G; Scheld HH
    Cardiovasc Surg; 1994 Dec; 2(6):693-7. PubMed ID: 7858986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epoxy compounds as a new cross-linking agent for porcine aortic leaflets: subcutaneous implant studies in rats.
    Imamura E; Sawatani O; Koyanagi H; Noishiki Y; Miyata T
    J Card Surg; 1989 Mar; 4(1):50-7. PubMed ID: 2519982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves.
    Zioupos P; Barbenel JC; Fisher J
    J Biomed Mater Res; 1994 Jan; 28(1):49-57. PubMed ID: 8126028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the Medtronic Intact bioprosthetic valve. Effects of "zero-pressure" fixation.
    Vesely I
    J Thorac Cardiovasc Surg; 1991 Jan; 101(1):90-9. PubMed ID: 1986174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frame-mounted porcine valve bioprostheses: preparation during aortic-root dilation. Biomechanics and design considerations.
    Butterfield M; Fisher J; Lockie KJ; Davies GA; Watterson K
    J Thorac Cardiovasc Surg; 1993 Dec; 106(6):1181-8. PubMed ID: 8246557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the design and dynamics of aortic bioprostheses in vivo.
    Thubrikar M; Skinner JR; Aouad J; Finkelmeier BA; Nolan SP
    J Thorac Cardiovasc Surg; 1982 Aug; 84(2):282-90. PubMed ID: 7098513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pretreatment with epoxy compounds on the mechanical properties of bovine pericardial bioprosthetic materials.
    Xi T; Liu F; Xi B
    J Biomater Appl; 1992 Jul; 7(1):61-75. PubMed ID: 1432579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porcine aortic valve bioprostheses: a morphologic comparison of the effects of fixation pressure.
    Hilbert SL; Barrick MK; Ferrans VJ
    J Biomed Mater Res; 1990 Jun; 24(6):773-87. PubMed ID: 2113925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porcine aortic leaflet arrangement may contribute to clinical xenograft failure.
    Grande KJ; Kunzelman KS; Cochran RP; David TE; Verrier ED
    ASAIO J; 1993; 39(4):918-22. PubMed ID: 8123927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.