These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 8268618)
1. A superconductive electromagnetic pump without any mechanical moving parts. Qian KX; Wang SS; Chu SH ASAIO J; 1993; 39(3):M649-53. PubMed ID: 8268618 [TBL] [Abstract][Full Text] [Related]
2. Control of a rotary pulsatile cardiac assist pump driven by an electric motor without a pressure sensor to avoid collapse of the pump inlet. Trinkl J; Havlik P; Mesana T; Mitsui N; Morita S; Demunck JL; Tourres JL; Monties JR ASAIO J; 1993; 39(3):M237-41. PubMed ID: 8268535 [TBL] [Abstract][Full Text] [Related]
3. A passive magnetically and hydrodynamically suspended rotary blood pump. Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524 [TBL] [Abstract][Full Text] [Related]
4. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump. Qian KX; Zeng P; Ru WM; Yuan HY; Feng ZG; Li L J Med Eng Technol; 2002; 26(1):36-8. PubMed ID: 11924845 [TBL] [Abstract][Full Text] [Related]
5. Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device. Khanwilkar P; Olsen D; Bearnson G; Allaire P; Maslen E; Flack R; Long J Artif Organs; 1996 Jun; 20(6):597-604. PubMed ID: 8817963 [TBL] [Abstract][Full Text] [Related]
6. The CentriMag: a new optimized centrifugal blood pump with levitating impeller. Mueller JP; Kuenzli A; Reuthebuch O; Dasse K; Kent S; Zuend G; Turina MI; Lachat ML Heart Surg Forum; 2004; 7(5):E477-80. PubMed ID: 15802261 [TBL] [Abstract][Full Text] [Related]
7. Interaction of an idealized cavopulmonary circulation with mechanical circulatory assist using an intravascular rotary blood pump. Bhavsar SS; Moskowitz WB; Throckmorton AL Artif Organs; 2010 Oct; 34(10):816-27. PubMed ID: 20964699 [TBL] [Abstract][Full Text] [Related]
8. Development of a prototype magnetically suspended rotor ventricular assist device. Bearnson GB; Maslen EH; Olsen DB; Allaire PE; Khanwilkar PS; Long JW; Kim HC ASAIO J; 1996; 42(4):275-81. PubMed ID: 8828784 [TBL] [Abstract][Full Text] [Related]
9. [Improved design of permanent maglev impeller assist heart]. Qian K; Zeng P; Ru W; Yuan H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Dec; 19(4):593-5. PubMed ID: 12561356 [TBL] [Abstract][Full Text] [Related]
10. Influence of radial clearance and rotor motion to hemolysis in a journal bearing of a centrifugal blood pump. Kataoka H; Kimura Y; Fujita H; Takatani S Artif Organs; 2006 Nov; 30(11):841-54. PubMed ID: 17062107 [TBL] [Abstract][Full Text] [Related]
11. A novel permanent maglev rotary LVAD with passive magnetic bearings. Qian KX; Yuan HY; Zeng P; Ru WM J Med Eng Technol; 2005; 29(5):235-7. PubMed ID: 16126584 [TBL] [Abstract][Full Text] [Related]
12. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287 [TBL] [Abstract][Full Text] [Related]
13. Design, development, and first in vivo results of an implantable ventricular assist device, MicroVad. Kerkhoffs W; Schumacher O; Meyns B; Verbeken E; Leunens V; Bollen H; Reul H Artif Organs; 2004 Oct; 28(10):904-10. PubMed ID: 15384996 [TBL] [Abstract][Full Text] [Related]