BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8268621)

  • 1. Life testing of implantable batteries for a total artificial heart.
    Powers RA; Wolga AE; Ochs BD; Yu LS; Kung RT
    ASAIO J; 1993; 39(3):M663-7. PubMed ID: 8268621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of nickel-cadmium battery packs for mechanical circulatory support devices.
    MacLean GK; Aiken PA; Adams WA; Mussivand T
    ASAIO J; 1993; 39(3):M423-6. PubMed ID: 8268571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cycle testing of the MagScrew total artificial heart external battery pack.
    Casas F; Weber S; Klatte R; Luangphakdy V; Smith WA
    Artif Organs; 2007 Sep; 31(9):698-702. PubMed ID: 17725697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pulsatile power loads on nickel/cadmium battery cells for mechanical circulatory support devices.
    MacLean GK; Aiken PA; Duguay DG; Adams WA; Mussivand T
    ASAIO J; 1994; 40(1):67-9. PubMed ID: 8186495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cycle testing of the MagScrew total artificial heart external battery pack: update I.
    Casas F; Weber S; Klatte R; Goel V; Smith WA
    Artif Organs; 2011 Feb; 35(2):188-91. PubMed ID: 21323686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A solar cell system for extension of battery run time in a moving actuator total artificial heart.
    Ahn JM; Kim WE; Choi SW; Min BG; Kim WG
    ASAIO J; 1997; 43(5):M673-6. PubMed ID: 9360131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of rechargeable lithium and nickel/cadmium battery cells for implantable circulatory support devices.
    MacLean GK; Aiken PA; Adams WA; Mussivand T
    Artif Organs; 1994 Apr; 18(4):331-4. PubMed ID: 8024488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test.
    Okamoto E; Watanabe K; Hashiba K; Inoue T; Iwazawa E; Momoi M; Hashimoto T; Mitamura Y
    ASAIO J; 2002; 48(5):495-502. PubMed ID: 12296569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intelligent Li ion battery management based on a digital signal processor for a moving actuator total artificial heart.
    Kim WE; Ahn JM; Choi SW; Min BG
    ASAIO J; 1997; 43(5):M588-92. PubMed ID: 9360113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Baylor-ABI electromechanical total artificial heart. Accelerated endurance testing.
    Orime Y; Takatani S; Ohara Y; Tasai K; Naito K; Mizuguchi K; Damm G; Glueck J; Summers D; Noon GP
    ASAIO J; 1993; 39(3):M172-6. PubMed ID: 8268523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An implantable power supply with an optically rechargeable lithium battery.
    Goto K; Nakagawa T; Nakamura O; Kawata S
    IEEE Trans Biomed Eng; 2001 Jul; 48(7):830-3. PubMed ID: 11442295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rechargeable lead-acid batteries.
    Health Devices; 1990 Sep; 19(9):321-7. PubMed ID: 2211174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thin film rechargeable lithium batteries for implantable devices.
    Bates JB; Dudney NJ
    ASAIO J; 1997; 43(5):M644-7. PubMed ID: 9360124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an implantable high-energy and compact battery system for artificial heart.
    Okamoto E; Inoue T; Watanabe K; Hashimoto T; Iwazawa E; Abe Y; Chinzei T; Isoyama T; Kobayashi S; Saito I; Sato F; Matsuki H; Imachi K; Mitamura Y
    Artif Organs; 2003 Feb; 27(2):184-8. PubMed ID: 12580777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of a nickel-metal hydride battery for totally implantable artificial hearts.
    Okamoto E; Yoshida T; Fujiyoshi M; Shimanaka M; Takeuchi A; Mitamura Y; Mikami T
    ASAIO J; 1996; 42(5):M332-7. PubMed ID: 8944901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of a rechargeable internal back-up battery for a totally implantable artificial heart.
    Honda H; Shiba K; Shu E; Koshiji K; Murai T; Nakamura T; Masuzawa T; Tatsumi E; Taenaka Y; Takano H
    ASAIO J; 1999; 45(4):339-43. PubMed ID: 10445742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small portable proton exchange membrane fuel cell and hydrogen generator for medical applications.
    Adlhart OJ; Rohonyi P; Modroukas D; Driller J
    ASAIO J; 1997; 43(3):214-9. PubMed ID: 9152494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Totally implantable total artificial heart and ventricular assist device with multipurpose miniature electromechanical energy system.
    Takatani S; Orime Y; Tasai K; Ohara Y; Naito K; Mizuguchi K; Makinouchi K; Damm G; Glueck J; Ling J
    Artif Organs; 1994 Jan; 18(1):80-92. PubMed ID: 8141662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.