BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 8268800)

  • 1. Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework.
    Hempel J; Nicholas H; Lindahl R
    Protein Sci; 1993 Nov; 2(11):1890-900. PubMed ID: 8268800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of coenzyme binding by a single point mutation at the coenzyme binding domain of E. coli lactaldehyde dehydrogenase.
    Rodríguez-Zavala JS
    Protein Sci; 2008 Mar; 17(3):563-70. PubMed ID: 18218709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of cysteine 289 in the catalytic activity of an NADP(+)-specific fatty aldehyde dehydrogenase from Vibrio harveyi.
    Vedadi M; Szittner R; Smillie L; Meighen E
    Biochemistry; 1995 Dec; 34(51):16725-32. PubMed ID: 8527447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residues that influence coenzyme preference in the aldehyde dehydrogenases.
    González-Segura L; Riveros-Rosas H; Julián-Sánchez A; Muñoz-Clares RA
    Chem Biol Interact; 2015 Jun; 234():59-74. PubMed ID: 25601141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of E. coli tetrameric aldehyde dehydrogenases with atypical properties compared to other aldehyde dehydrogenases.
    Rodríguez-Zavala JS; Allali-Hassani A; Weiner H
    Protein Sci; 2006 Jun; 15(6):1387-96. PubMed ID: 16731973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Azza S; Branlant G; Aubry A
    J Mol Biol; 1999 Jul; 290(1):161-73. PubMed ID: 10388564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutational analysis of the novel catalytic domains of alpha-aminoadipate reductase (Lys2p) from Candida albicans.
    Guo S; Bhattacharjee JK
    Mol Genet Genomics; 2003 May; 269(2):271-9. PubMed ID: 12756539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Biochemistry; 1999 Aug; 38(35):11440-7. PubMed ID: 10471295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities.
    Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG
    Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of structural comparisons to select mutagenic targets in aspartate-beta-semialdehyde dehydrogenase.
    Ouyang J; Viola RE
    Biochemistry; 1995 May; 34(19):6394-9. PubMed ID: 7756269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological role of yeasts NAD(P)+ and NADP+-linked aldehyde dehydrogenases.
    Llorente N; de Castro IN
    Rev Esp Fisiol; 1977 Jun; 33(2):135-42. PubMed ID: 17891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UDP-glucose dehydrogenase from bovine liver: primary structure and relationship to other dehydrogenases.
    Hempel J; Perozich J; Romovacek H; Hinich A; Kuo I; Feingold DS
    Protein Sci; 1994 Jul; 3(7):1074-80. PubMed ID: 7920253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase.
    Lee P; Colman RF
    Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pea formaldehyde-active class III alcohol dehydrogenase: common derivation of the plant and animal forms but not of the corresponding ethanol-active forms (classes I and P).
    Shafqat J; El-Ahmad M; Danielsson O; Martínez MC; Persson B; Parés X; Jornvall H
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5595-9. PubMed ID: 8643621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+.
    Levy HR; Vought VE; Yin X; Adams MJ
    Arch Biochem Biophys; 1996 Feb; 326(1):145-51. PubMed ID: 8579362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket.
    Bertram JH; Mulliner KM; Shi K; Plunkett MH; Nixon P; Serratore NA; Douglas CJ; Aihara H; Barney BM
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    J Mol Biol; 2008 Jun; 379(3):597-608. PubMed ID: 18462753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure prediction of the NAD binding site of proton-pumping transhydrogenase from Escherichia coli.
    Fjellström O; Olausson T; Hu X; Källebring B; Ahmad S; Bragg PD; Rydström J
    Proteins; 1995 Feb; 21(2):91-104. PubMed ID: 7777492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.