These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8268803)

  • 21. A novel flavin adenine dinucleotide (FAD) containing d-lactate dehydrogenase from the thermoacidophilic crenarchaeota Sulfolobus tokodaii strain 7: purification, characterization and expression in Escherichia coli.
    Satomura T; Kawakami R; Sakuraba H; Ohshima T
    J Biosci Bioeng; 2008 Jul; 106(1):16-21. PubMed ID: 18691525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporation of fluorotryptophans into proteins of escherichia coli.
    Pratt EA; Ho C
    Biochemistry; 1975 Jul; 14(13):3035-40. PubMed ID: 1096937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nature and environment of the sulfhydryls of membrane-associated D-lactate dehydrogenase of Escherichia coli.
    Dowd SR; Pratt EA; Sun ZY; Ho C
    Biochim Biophys Acta; 1995 Oct; 1252(2):278-83. PubMed ID: 7578234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 19F NMR studies of the D-galactose chemosensory receptor. 2. Ca(II) binding yields a local structural change.
    Luck LA; Falke JJ
    Biochemistry; 1991 Apr; 30(17):4257-61. PubMed ID: 1850620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes.
    Grage SL; Wang J; Cross TA; Ulrich AS
    Biophys J; 2002 Dec; 83(6):3336-50. PubMed ID: 12496101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.
    Boernke WE; Millard CS; Stevens PW; Kakar SN; Stevens FJ; Donnelly MI
    Arch Biochem Biophys; 1995 Sep; 322(1):43-52. PubMed ID: 7574693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intersubunit communication in tryptophan synthase by carbon-13 and fluorine-19 REDOR NMR.
    McDowell LM; Lee M; McKay RA; Anderson KS; Schaefer J
    Biochemistry; 1996 Mar; 35(10):3328-34. PubMed ID: 8605170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of 19F NMR to probe protein structure and conformational changes.
    Danielson MA; Falke JJ
    Annu Rev Biophys Biomol Struct; 1996; 25():163-95. PubMed ID: 8800468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Urea-dependent unfolding of murine adenosine deaminase: sequential destabilization as measured by 19F NMR.
    Shu Q; Frieden C
    Biochemistry; 2004 Feb; 43(6):1432-9. PubMed ID: 14769019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 4-Fluorotryptophan alkaline phosphatase from E. coli: preparation, properties, and 19F NMR spectrum.
    Browne DT; Otvos JD
    Biochem Biophys Res Commun; 1976 Feb; 68(3):907-13. PubMed ID: 769791
    [No Abstract]   [Full Text] [Related]  

  • 31. Fluorine-19 nuclear magnetic resonance study of 5-fluorotryptophan-labeled histidine-binding protein J of Salmonella typhimurium.
    Post JF; Cottam PF; Simplaceanu V; Ho C
    J Mol Biol; 1984 Nov; 179(4):729-43. PubMed ID: 6389886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanism of VanHst, an alpha-ketoacid dehydrogenase required for glycopeptide antibiotic resistance from a glycopeptide producing organism.
    Marshall CG; Zolli M; Wright GD
    Biochemistry; 1999 Jun; 38(26):8485-91. PubMed ID: 10387095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 19F NMR investigation of F(1)-ATPase of Escherichia coli using fluorotryptophan labeling.
    Lee HW; Sohn JH; Yeh BI; Choi JW; Jung S; Kim HW
    J Biochem; 2000 Jun; 127(6):1053-6. PubMed ID: 10833274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of C40/82A and P27A C40/82A barstar mutants using 19F NMR.
    Li H; Frieden C
    Biochemistry; 2007 Apr; 46(14):4337-47. PubMed ID: 17371049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Domain closure, substrate specificity and catalysis of D-lactate dehydrogenase from Lactobacillus bulgaricus.
    Razeto A; Kochhar S; Hottinger H; Dauter M; Wilson KS; Lamzin VS
    J Mol Biol; 2002 Apr; 318(1):109-19. PubMed ID: 12054772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy.
    Zhu W; Becker DF
    Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 19F NMR studies of plasminogen activator inhibitor-1.
    Abbott GL; Blouse GE; Perron MJ; Shore JD; Luck LA; Szabo AG
    Biochemistry; 2004 Feb; 43(6):1507-19. PubMed ID: 14769027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of the eukaryotic pore-forming cytolysin equinatoxin II with model membranes: 19F NMR studies.
    Anderluh G; Razpotnik A; Podlesek Z; Macek P; Separovic F; Norton RS
    J Mol Biol; 2005 Mar; 347(1):27-39. PubMed ID: 15733915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incorporation of tryptophan analogues into staphylococcal nuclease, its V66W mutant, and Delta 137-149 fragment: spectroscopic studies.
    Wong CY; Eftink MR
    Biochemistry; 1998 Jun; 37(25):8938-46. PubMed ID: 9636035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Guided evolution of enzymes with new substrate specificities.
    el Hawrani AS; Sessions RB; Moreton KM; Holbrook JJ
    J Mol Biol; 1996 Nov; 264(1):97-110. PubMed ID: 8950270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.