BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 8269055)

  • 1. Anion-exchange chromatographic behavior of recombinant rat cytochrome b5. Thermodynamic driving forces and temperature dependence of the stoichiometric displacement parameter Z.
    Roush DJ; Gill DS; Willson RC
    J Chromatogr A; 1993 Nov; 653(2):207-18. PubMed ID: 8269055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcalorimetric characterization of the anion-exchange adsorption of recombinant cytochrome b5 and its surface-charge mutants.
    Gill DS; Roush DJ; Shick KA; Willson RC
    J Chromatogr A; 1995 Oct; 715(1):81-93. PubMed ID: 8520668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence of a preferred anion-exchange binding site on cytochrome b5: structural and thermodynamic considerations.
    Gill DS; Roush DJ; Willson RC
    J Chromatogr A; 1994 Oct; 684(1):55-63. PubMed ID: 7987477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic potentials and electrostatic interaction energies of rat cytochrome b5 and a simulated anion-exchange adsorbent surface.
    Roush DJ; Gill DS; Willson RC
    Biophys J; 1994 May; 66(5):1290-300. PubMed ID: 8061185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive ion-exchange adsorption of proteins: competitive isotherms with controlled competitor concentration.
    Cano T; Offringa ND; Willson RC
    J Chromatogr A; 2005 Jun; 1079(1-2):116-26. PubMed ID: 16038297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilised metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions.
    Finette GM; Mao QM; Hearn MT
    J Chromatogr A; 1997 Feb; 763(1-2):71-90. PubMed ID: 9129317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcalorimetric Analysis of the Adsorption of Lysozyme and Cytochrome c onto Cation-Exchange Chromatography Resins: Influence of Temperature on Retention.
    Simoes-Cardoso JC; Kojo H; Yoshimoto N; Yamamoto S
    Langmuir; 2020 Apr; 36(13):3336-3345. PubMed ID: 32160753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of functionally active cytochrome b5 in Escherichia coli: isolation, purification, and use of the immobilized recombinant heme protein for affinity chromatography of electron-transfer proteins.
    Chudaev MV; Usanov SA
    Biochemistry (Mosc); 1997 Apr; 62(4):401-11. PubMed ID: 9275279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function of tyrosine 74 of cytochrome b5.
    Vergères G; Chen DY; Wu FF; Waskell L
    Arch Biochem Biophys; 1993 Sep; 305(2):231-41. PubMed ID: 8373159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic description of peptide adsorption on mixed-mode resins.
    Chilamkurthi S; Sevillano DM; Albers LH; Sahoo MR; Verheijen PJ; van der Wielen LA; den Hollander JL; Ottens M
    J Chromatogr A; 2014 May; 1341():41-9. PubMed ID: 24698309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-liquid extraction of a recombinant protein, cytochrome b5, with aqueous two-phase systems of polyethylene glycol and potassium phosphate salts.
    Sarmento MJ; Pires MJ; Cabral JM; Aires-Barros MR
    J Chromatogr A; 1994 May; 668(1):117-20. PubMed ID: 8004226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysozyme adsorption onto a cation-exchanger: mechanism of interaction study based on the analysis of retention chromatographic data.
    Marques FS; Silva GL; Thrash ME; Dias-Cabral AC
    Colloids Surf B Biointerfaces; 2014 Oct; 122():801-807. PubMed ID: 25193151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.
    Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome b5 and a recombinant protein containing the cytochrome b5 hydrophobic domain spontaneously associate with the plasma membranes of cells.
    George SK; Xu YH; Benson LA; Pratsch L; Peters R; Ihler GM
    Biochim Biophys Acta; 1991 Jul; 1066(2):131-43. PubMed ID: 1906748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping electrostatic interactions in macromolecular associations.
    Rodgers KK; Sligar SG
    J Mol Biol; 1991 Oct; 221(4):1453-60. PubMed ID: 1658337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and purification of the amphipathic form of rabbit cytochrome b5 in Escherichia coli.
    Waskell L
    Methods Mol Biol; 2003; 228():3-9. PubMed ID: 12824539
    [No Abstract]   [Full Text] [Related]  

  • 18. Microcalorimetric study of adsorption of glycomacropeptide on anion-exchange chromatography adsorbent.
    Lira RA; Minim LA; Bonomo RC; Minim VP; da Silva LH; da Silva MC
    J Chromatogr A; 2009 May; 1216(20):4440-4. PubMed ID: 19342056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of chromatographic ion-exchange resins VI. Weak anion-exchange resins.
    Staby A; Jensen RH; Bensch M; Hubbuch J; Dünweber DL; Krarup J; Nielsen J; Lund M; Kidal S; Hansen TB; Jensen IH
    J Chromatogr A; 2007 Sep; 1164(1-2):82-94. PubMed ID: 17658538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of folding and unfolding reactions of cytochrome b5.
    Manyusa S; Mortuza G; Whitford D
    Biochemistry; 1999 Oct; 38(43):14352-62. PubMed ID: 10572010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.