BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8269592)

  • 1. Trofosfamide metabolism in different species--ifosfamide is the predominant metabolite.
    Boos J; Küpker F; Blaschke G; Jürgens H
    Cancer Chemother Pharmacol; 1993; 33(1):71-6. PubMed ID: 8269592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the clinical pharmacokinetics of trofosfamide.
    Brinker A; Kisro J; Letsch C; Brüggemann SK; Wagner T
    Int J Clin Pharmacol Ther; 2002 Aug; 40(8):376-81. PubMed ID: 12467306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations on the pharmacokinetics of trofosfamide and its metabolites-first report of 4-hydroxy-trofosfamide kinetics in humans.
    Preiss R; Baumann F; Stefanovic D; Niemeyer U; Pönisch W; Niederwieser D
    Cancer Chemother Pharmacol; 2004 Jun; 53(6):496-502. PubMed ID: 15138712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacokinetics and efficacy of ifosfamide or trofosfamide in patients with intraocular lymphoma.
    Jahnke K; Wagner T; Bechrakis NE; Willerding G; Coupland SE; Fischer L; Thiel E; Korfel A
    Ann Oncol; 2005 Dec; 16(12):1974-8. PubMed ID: 16219622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxylation and N-dechloroethylation of Ifosfamide and deuterated Ifosfamide by the human cytochrome p450s and their commonly occurring polymorphisms.
    Calinski DM; Zhang H; Ludeman S; Dolan ME; Hollenberg PF
    Drug Metab Dispos; 2015 Jul; 43(7):1084-90. PubMed ID: 25934575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ifosfamide and the metabolites of side chain oxidation--excretion in urine in various pediatric therapeutic protocols].
    Boos J; Welslau U; Ritter J; Blaschke G; Schellong G
    Klin Padiatr; 1992; 204(4):299-305. PubMed ID: 1518269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Classical oxazaphosphorines--metabolism and therapeutic properties--new implications].
    Sloderbach A; Górska A; Sikorska M; Misiura K; Hładoń B
    Postepy Hig Med Dosw (Online); 2013 Dec; 67():1235-53. PubMed ID: 24379264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes.
    Chang TK; Weber GF; Crespi CL; Waxman DJ
    Cancer Res; 1993 Dec; 53(23):5629-37. PubMed ID: 8242617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of cytochrome P450 in oxazaphosphorine metabolism. Deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450.
    Yu L; Waxman DJ
    Drug Metab Dispos; 1996 Nov; 24(11):1254-62. PubMed ID: 8937861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the major human hepatic cytochrome P450 involved in 4-hydroxylation and N-dechloroethylation of trofosfamide.
    May-Manke A; Kroemer H; Hempel G; Bohnenstengel F; Hohenlöchter B; Blaschke G; Boos J
    Cancer Chemother Pharmacol; 1999; 44(4):327-34. PubMed ID: 10447581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines.
    Chang TK; Yu L; Maurel P; Waxman DJ
    Cancer Res; 1997 May; 57(10):1946-54. PubMed ID: 9157990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative activity of ifosfamide and cyclophosphamide.
    Brade W; Seeber S; Herdrich K
    Cancer Chemother Pharmacol; 1986; 18 Suppl 2():S1-9. PubMed ID: 3545522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of 1,2-epoxy-3-butene to 1,2:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes.
    Seaton MJ; Follansbee MH; Bond JA
    Carcinogenesis; 1995 Oct; 16(10):2287-93. PubMed ID: 7586124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urinary excretion of the enantiomers of ifosfamide and its inactive metabolites in children.
    Boos J; Welslau U; Ritter J; Blaschke G; Schellong G
    Cancer Chemother Pharmacol; 1991; 28(6):455-60. PubMed ID: 1934249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice.
    Csanády GA; Guengerich FP; Bond JA
    Carcinogenesis; 1992 Jul; 13(7):1143-53. PubMed ID: 1638680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2 photocatalytic degradation and transformation of oxazaphosphorine drugs in an aqueous environment.
    Lai WW; Lin HH; Lin AY
    J Hazard Mater; 2015 Apr; 287():133-41. PubMed ID: 25644030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity.
    Yu LJ; Drewes P; Gustafsson K; Brain EG; Hecht JE; Waxman DJ
    J Pharmacol Exp Ther; 1999 Mar; 288(3):928-37. PubMed ID: 10027828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetics of trofosfamide and its dechloroethylated metabolites.
    Hempel G; Krümpelmann S; May-Manke A; Hohenlöchter B; Blaschke G; Jürgens H; Boos J
    Cancer Chemother Pharmacol; 1997; 40(1):45-50. PubMed ID: 9137528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatic N-oxidation, acetyl-transfer and DNA-binding of the acetylated metabolites of the carcinogen, benzidine.
    Frederick CB; Weis CC; Flammang TJ; Martin CN; Kadlubar FF
    Carcinogenesis; 1985 Jul; 6(7):959-65. PubMed ID: 4017176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) modulates rat liver microsomal cyclophosphamide and ifosphamide activation by suppressing cytochrome P450 2C11 messenger RNA levels.
    Chang TK; Chen H; Waxman DJ
    Drug Metab Dispos; 1994; 22(5):673-9. PubMed ID: 7835216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.