BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8269592)

  • 41. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide.
    Huang Z; Roy P; Waxman DJ
    Biochem Pharmacol; 2000 Apr; 59(8):961-72. PubMed ID: 10692561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stereoselective metabolism of the monoterpene carvone by rat and human liver microsomes.
    Jäger W; Mayer M; Platzer P; Reznicek G; Dietrich H; Buchbauer G
    J Pharm Pharmacol; 2000 Feb; 52(2):191-7. PubMed ID: 10714949
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective metabolism of E-3,4-bis(4-ethylphenyl)hex-3-ene in rat liver microsomes.
    Fabian EJ; Metzler M
    Arch Toxicol; 2006 Jan; 80(1):17-26. PubMed ID: 16187102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation.
    Clarke L; Waxman DJ
    Cancer Res; 1989 May; 49(9):2344-50. PubMed ID: 2706622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydroxylation of 4,4'-methylenebis(2-chloroaniline) by canine, guinea pig, and rat liver microsomes.
    Chen TH; Kuslikis BI; Braselton WE
    Drug Metab Dispos; 1989; 17(4):406-13. PubMed ID: 2571481
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biotransformation of lovastatin. II. In vitro metabolism by rat and mouse liver microsomes and involvement of cytochrome P-450 in dehydrogenation of lovastatin.
    Vyas KP; Kari PH; Prakash SR; Duggan DE
    Drug Metab Dispos; 1990; 18(2):218-22. PubMed ID: 1971576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isophosphoramide mustard, a metabolite of ifosfamide with activity against murine tumours comparable to cyclophosphamide.
    Struck RF; Dykes DJ; Corbett TH; Suling WJ; Trader MW
    Br J Cancer; 1983 Jan; 47(1):15-26. PubMed ID: 6821629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolism of carbosulfan. I. Species differences in the in vitro biotransformation by mammalian hepatic microsomes including human.
    Abass K; Reponen P; Mattila S; Pelkonen O
    Chem Biol Interact; 2009 Oct; 181(2):210-9. PubMed ID: 19523935
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of P450IIE1 in the metabolism of 3-hydroxypyridine, a constituent of tobacco smoke: redox cycling and DNA strand scission by the metabolite 2,5-dihydroxypyridine.
    Kim SG; Novak RF
    Cancer Res; 1990 Sep; 50(17):5333-9. PubMed ID: 2167153
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [In vitro comparison of thienorphine metabolism in liver microsomes of human, Beagle dog and rat].
    Deng JT; Zhuang XM; Li H
    Yao Xue Xue Bao; 2010 Jan; 45(1):98-103. PubMed ID: 21351457
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Studies on the side-chain hydroxylation of ifosfamide and its bromo analogue.
    Misiura K; Kinas RW; Kuśnierczyk H
    Bioorg Med Chem Lett; 2002 Feb; 12(3):427-31. PubMed ID: 11814813
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biotransformation of tolterodine, a new muscarinic receptor antagonist, in mice, rats, and dogs.
    Andersson SH; Lindgren A; Postlind H
    Drug Metab Dispos; 1998 Jun; 26(6):528-35. PubMed ID: 9616187
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of cyclophosphamide and ifosfamide on neuroblastoma cells before and after activation by microsomes.
    Meyer T; Wierse G; Weinrebe W; Treuner J; Niethammer D; Bruchelt G
    Anticancer Res; 1997; 17(2A):981-6. PubMed ID: 9137438
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Benzene metabolism by human liver microsomes in relation to cytochrome P450 2E1 activity.
    Seaton MJ; Schlosser PM; Bond JA; Medinsky MA
    Carcinogenesis; 1994 Sep; 15(9):1799-806. PubMed ID: 7923572
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Species differences in the biotransformation of the food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by hepatic microsomes and cytosols from humans, rats, and mice.
    Lin DX; Lang NP; Kadlubar FF
    Drug Metab Dispos; 1995 Apr; 23(4):518-24. PubMed ID: 7600922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative in vitro metabolism of T-2 toxin by hepatic microsomes prepared from phenobarbital-induced or control rats, mice, rabbits and chickens.
    Knupp CA; Swanson SP; Buck WB
    Food Chem Toxicol; 1987 Nov; 25(11):859-65. PubMed ID: 3692389
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolism of ifosfamide to chloroacetaldehyde contributes to antitumor activity in vivo.
    Börner K; Kisro J; Brüggemann SK; Hagenah W; Peters SO; Wagner T
    Drug Metab Dispos; 2000 May; 28(5):573-6. PubMed ID: 10772637
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition of gene expression of carnitine palmitoyltransferase I and heart fatty acid binding protein in cyclophosphamide and ifosfamide-induced acute cardiotoxic rat models.
    Sayed-Ahmed MM; Aldelemy ML; Al-Shabanah OA; Hafez MM; Al-Hosaini KA; Al-Harbi NO; Al-Sharary SD; Al-Harbi MM
    Cardiovasc Toxicol; 2014 Sep; 14(3):232-42. PubMed ID: 24469765
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ideas and reality in the development of cancer chemotherapeutic agents, with particular reference to oxazaphosphorine cytostatics.
    Brock N
    J Cancer Res Clin Oncol; 1986; 111(1):1-12. PubMed ID: 3949846
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Activation of the anti-cancer drug ifosphamide by rat liver microsomal P450 enzymes.
    Weber GF; Waxman DJ
    Biochem Pharmacol; 1993 Apr; 45(8):1685-94. PubMed ID: 8484807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.