BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 8269615)

  • 1. Benzene and phenol metabolism by mouse and rat liver microsomes.
    Schlosser PM; Bond JA; Medinsky MA
    Carcinogenesis; 1993 Dec; 14(12):2477-86. PubMed ID: 8269615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative studies of the in vitro metabolism and covalent binding of 14C-benzene by liver slices and microsomal fraction of mouse, rat, and human.
    Brodfuehrer JI; Chapman DE; Wilke TJ; Powis G
    Drug Metab Dispos; 1990; 18(1):20-7. PubMed ID: 1970773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro conjugation of benzene metabolites by human liver: potential influence of interindividual variability on benzene toxicity.
    Seaton MJ; Schlosser P; Medinsky MA
    Carcinogenesis; 1995 Jul; 16(7):1519-27. PubMed ID: 7614685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a mathematical model of rodent in vitro benzene metabolism to predict human in vitro metabolism data.
    Lovern MR; Maris ME; Schlosser PM
    Carcinogenesis; 1999 Aug; 20(8):1511-20. PubMed ID: 10426800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes.
    Sawahata T; Neal RA
    Mol Pharmacol; 1983 Mar; 23(2):453-60. PubMed ID: 6835203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benzene metabolism by human liver microsomes in relation to cytochrome P450 2E1 activity.
    Seaton MJ; Schlosser PM; Bond JA; Medinsky MA
    Carcinogenesis; 1994 Sep; 15(9):1799-806. PubMed ID: 7923572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone.
    Snyder R; Chepiga T; Yang CS; Thomas H; Platt K; Oesch F
    Toxicol Appl Pharmacol; 1993 Oct; 122(2):172-81. PubMed ID: 8211999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benzene: a case study in parent chemical and metabolite interactions.
    Medinsky MA; Kenyon EM; Schlosser PM
    Toxicology; 1995 Dec; 105(2-3):225-33. PubMed ID: 8571360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical issues in benzene toxicity and metabolism: the effect of interactions with other organic chemicals on risk assessment.
    Medinsky MA; Schlosser PM; Bond JA
    Environ Health Perspect; 1994 Nov; 102 Suppl 9(Suppl 9):119-24. PubMed ID: 7698073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that covalent binding of metabolically activated phenol to microsomal proteins is caused by oxidised products of hydroquinone and catechol.
    Wallin H; Melin P; Schelin C; Jergil B
    Chem Biol Interact; 1985 Nov; 55(3):335-46. PubMed ID: 4075440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene.
    Smart RC; Zannoni VG
    Mol Pharmacol; 1984 Jul; 26(1):105-11. PubMed ID: 6749127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic considerations in benzene physiological model development.
    Medinsky MA; Kenyon EM; Seaton MJ; Schlosser PM
    Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1399-404. PubMed ID: 9118926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the metabolism of benzene and its metabolite phenol in rat liver microsomes.
    Gilmour SK; Kalf GF; Snyder R
    Adv Exp Med Biol; 1986; 197():223-35. PubMed ID: 3766259
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of benzene oxide as a product of benzene metabolism by mouse, rat, and human liver microsomes.
    Lovern MR; Turner MJ; Meyer M; Kedderis GL; Bechtold WE; Schlosser PM
    Carcinogenesis; 1997 Sep; 18(9):1695-700. PubMed ID: 9328163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P450 isozymes involved in the metabolism of phenol, a benzene metabolite.
    Powley MW; Carlson GP
    Toxicol Lett; 2001 Dec; 125(1-3):117-23. PubMed ID: 11701230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species comparison of hepatic and pulmonary metabolism of benzene.
    Powley MW; Carlson GP
    Toxicology; 1999 Dec; 139(3):207-17. PubMed ID: 10647921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of benzene in rat hepatocytes. Influence of inducers on phenol glucuronidation.
    Schrenk D; Bock KW
    Drug Metab Dispos; 1990; 18(5):720-5. PubMed ID: 1981726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species differences in benzene hydroxylation to phenol by pulmonary and hepatic microsomes.
    Harper C; Drew RT; Fouts JR
    Drug Metab Dispos; 1975; 3(5):381-8. PubMed ID: 241619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifications in the metabolic pathways of benzene in streptozotocin-induced diabetic rat.
    Costa C; Pupo C; Viscomi G; Catania S; Salemi M; Imperatore C
    Arch Toxicol; 1999 Aug; 73(6):301-6. PubMed ID: 10447556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of sister-chromatid exchanges in human lymphocytes by microsomal activation of benzene metabolites.
    Morimoto K; Wolff S; Koizumi A
    Mutat Res; 1983 Mar; 119(3):355-60. PubMed ID: 6828070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.