BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 8269644)

  • 1. Use of fluorescent latex microspheres to measure coronary blood flow distribution.
    Abel FL; Cooper RH; Beck RR
    Circ Shock; 1993 Nov; 41(3):156-61. PubMed ID: 8269644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of regional myocardial blood flow using fluorescent microspheres.
    Austin GE; Tuvlin MB; Martino-Salzman D; Hunter RL; Justicz AG; Thompson NK; Brooks AC
    Am J Cardiovasc Pathol; 1993; 4(4):352-7. PubMed ID: 8305198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of an automated fluorescent microsphere method to measure regional blood flow in the fetal lamb.
    Tan W; Riggs KW; Thies RL; Rurak DW
    Can J Physiol Pharmacol; 1997 Aug; 75(8):959-68. PubMed ID: 9360009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model.
    Nekolla SG; Reder S; Saraste A; Higuchi T; Dzewas G; Preissel A; Huisman M; Poethko T; Schuster T; Yu M; Robinson S; Casebier D; Henke J; Wester HJ; Schwaiger M
    Circulation; 2009 May; 119(17):2333-42. PubMed ID: 19380625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent vs. radioactive microsphere measurement of regional myocardial blood flow.
    Chien GL; Anselone CG; Davis RF; Van Winkle DM
    Cardiovasc Res; 1995 Sep; 30(3):405-12. PubMed ID: 7585832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The new nitroderivative ITF 296 improves collateral blood flow in a canine model of coronary thrombosis.
    Trivella MG; Barsotti G; Cereda R; Chiaverini F; Gromo G; L'Abbate A; Magnozzi D; Mizrahi J; Pelosi G; Taddei L
    J Cardiovasc Pharmacol; 1995; 26 Suppl 4():S31-6. PubMed ID: 8839224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracer adenosine: a novel myocardial flow marker.
    Lauer T; Loncar R; Deussen A
    J Nucl Med; 2003 Apr; 44(4):641-8. PubMed ID: 12679411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penetration into solid tumor tissue of fluorescent latex microspheres: a mimic of liposome particles.
    Pan XQ; Lee RJ; Ratnam M
    Anticancer Res; 2004; 24(5A):3005-8. PubMed ID: 15517908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocardial tissue perfusion determined by particulate and diffusible tracers during ischaemia: what is measured?
    Fluck DS; Etherington PJ; O'Hare D; Winlove CP; Sheridan DJ
    Cardiovasc Res; 1996 Nov; 32(5):869-78. PubMed ID: 8944818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardial perfusion imaging based on the blood oxygen level-dependent effect using T2-prepared steady-state free-precession magnetic resonance imaging.
    Fieno DS; Shea SM; Li Y; Harris KR; Finn JP; Li D
    Circulation; 2004 Sep; 110(10):1284-90. PubMed ID: 15326062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of organ blood flow with coloured microspheres in the rat.
    Hakkinen JP; Miller MW; Smith AH; Knight DR
    Cardiovasc Res; 1995 Jan; 29(1):74-9. PubMed ID: 7895242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent microspheres reveal different regional blood flow in hyperacutely rejected nontransgenic and hDAF pig hearts.
    Brandl U; Erhardt M; Jöckle H; Michel S; Thein E; Bittmann I; Brenner P; Burdorf L; Hammer C; Schmoeckel M; Reichart B
    Transplant Proc; 2006 Apr; 38(3):733-4. PubMed ID: 16647457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does blood flow through holmium:YAG transmyocardial laser channels?
    Kohmoto T; Fisher PE; Gu A; Zhu SM; Yano OJ; Spotnitz HM; Smith CR; Burkhoff D
    Ann Thorac Surg; 1996 Mar; 61(3):861-8. PubMed ID: 8619707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry.
    Telford W; Murga M; Hawley T; Hawley R; Packard B; Komoriya A; Haas F; Hubert C
    Cytometry A; 2005 Nov; 68(1):36-44. PubMed ID: 16163703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing regional myocardial blood flow in the mouse.
    Krueger MA; Huke SS; Glenny RW
    Circ Res; 2013 Apr; 112(9):e88-97. PubMed ID: 23513055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent microsphere imaging: a particle-tracking approach to the hemodynamic assessment of the retina and choroid.
    Khoobehi B; Shoelson B; Zhang YZ; Peyman GA
    Ophthalmic Surg Lasers; 1997 Nov; 28(11):937-47. PubMed ID: 9387182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel hydrodynamic approach to the treatment of coronary artery disease.
    Pacella JJ; Kameneva MV; Csikari M; Lu E; Villanueva FS
    Eur Heart J; 2006 Oct; 27(19):2362-9. PubMed ID: 16914478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method.
    Christian TF; Aletras AH; Arai AE
    J Magn Reson Imaging; 2008 Jun; 27(6):1271-7. PubMed ID: 18421683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a subendocardial ischaemic sheep model by intracoronary fluorescent microspheres.
    Li DS; Yong AC; Kilpatrick D
    Clin Exp Pharmacol Physiol; 1996 Feb; 23(2):111-8. PubMed ID: 8819638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.