BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 8270029)

  • 1. Biology of halophilic bacteria, Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance.
    Kates M
    Experientia; 1993 Dec; 49(12):1027-36. PubMed ID: 8270029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Archaebacterial lipids: structure, biosynthesis and function.
    Kates M
    Biochem Soc Symp; 1992; 58():51-72. PubMed ID: 1445410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of water and solute transport across archaebacterial lipid membranes.
    Mathai JC; Sprott GD; Zeidel ML
    J Biol Chem; 2001 Jul; 276(29):27266-71. PubMed ID: 11373291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polar lipids of a non-alkaliphilic extremely halophilic archaebacterium strain 172: a novel bis-sulfated glycolipid.
    Matsubara T; Iida-Tanaka N; Kamekura M; Moldoveanu N; Ishizuka I; Onishi H; Hayashi A; Kates M
    Biochim Biophys Acta; 1994 Aug; 1214(1):97-108. PubMed ID: 8068733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of membrane phospholipids and glycolipids from a halophilic archaebacterium by high-performance liquid chromatography/electrospray mass spectrometry.
    Qiu D; Games MP; Xiao X; Games DE; Walton TJ
    Rapid Commun Mass Spectrom; 2000; 14(17):1586-91. PubMed ID: 10960912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, physical properties, and function of archaebacterial lipids.
    Kates M
    Prog Clin Biol Res; 1988; 282():357-84. PubMed ID: 3149407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolayer properties of archaeol and caldarchaeol polar lipids of a methanogenic archaebacterium, Methanospirillum hungatei, at the air/water interface.
    Tomoaia-Cotisel M; Chifu E; Zsako J; Mocanu A; Quinn PJ; Kates M
    Chem Phys Lipids; 1992 Nov; 63(1-2):131-8. PubMed ID: 1486655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt tolerance of archaeal extremely halophilic lipid membranes.
    Tenchov B; Vescio EM; Sprott GD; Zeidel ML; Mathai JC
    J Biol Chem; 2006 Apr; 281(15):10016-23. PubMed ID: 16484230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains.
    Upasani VN; Desai SG; Moldoveanu N; Kates M
    Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():1959-66. PubMed ID: 7921247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of archaeal membrane ether lipids.
    Jain S; Caforio A; Driessen AJ
    Front Microbiol; 2014; 5():641. PubMed ID: 25505460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyarchaetidylserine and hydroxyarchaetidyl-myo-inositol in Methanosarcina barkeri: polar lipids with a new ether core portion.
    Nishihara M; Koga Y
    Biochim Biophys Acta; 1991 Mar; 1082(2):211-7. PubMed ID: 1901027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Insights Into the Polar Lipid Composition of Extremely Halo(alkali)philic Euryarchaea From Hypersaline Lakes.
    Bale NJ; Sorokin DY; Hopmans EC; Koenen M; Rijpstra WIC; Villanueva L; Wienk H; Sinninghe Damsté JS
    Front Microbiol; 2019; 10():377. PubMed ID: 30930858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipids as a principle for the identification of archaebacteria.
    Tornabene TG; Lloyd RE; Holzer G; Oro J
    Life Sci Space Res; 1980; 18():109-21. PubMed ID: 11968208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations.
    Koga Y; Morii H
    Microbiol Mol Biol Rev; 2007 Mar; 71(1):97-120. PubMed ID: 17347520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses.
    Koga Y; Nishihara M; Morii H; Akagawa-Matsushita M
    Microbiol Rev; 1993 Mar; 57(1):164-82. PubMed ID: 8464404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis.
    Matsuno Y; Sugai A; Higashibata H; Fukuda W; Ueda K; Uda I; Sato I; Itoh T; Imanaka T; Fujiwara S
    Biosci Biotechnol Biochem; 2009 Jan; 73(1):104-8. PubMed ID: 19129645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum.
    Nishihara M; Morii H; Koga Y
    J Biochem; 1987 Apr; 101(4):1007-15. PubMed ID: 3611039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of archaebacterial membrane lipids.
    Sprott GD
    J Bioenerg Biomembr; 1992 Dec; 24(6):555-66. PubMed ID: 1459987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli.
    Caforio A; Jain S; Fodran P; Siliakus M; Minnaard AJ; van der Oost J; Driessen AJ
    Biochem J; 2015 Sep; 470(3):343-55. PubMed ID: 26195826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of glycosylation by amphomycin and sugar nucleotide analogs PP36 and PP55 indicates that Haloferax volcanii beta-glucosylates both glycoproteins and glycolipids through lipid-linked sugar intermediates: evidence for three novel glycoproteins and a novel sulfated dihexosyl-archaeol glycolipid.
    Zhu BC; Drake RR; Schweingruber H; Laine RA
    Arch Biochem Biophys; 1995 Jun; 319(2):355-64. PubMed ID: 7786016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.