BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 8270739)

  • 1. Ear-canal impedance and reflection coefficient in human infants and adults.
    Keefe DH; Bulen JC; Arehart KH; Burns EM
    J Acoust Soc Am; 1993 Nov; 94(5):2617-38. PubMed ID: 8270739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry.
    Keefe DH; Levi E
    Ear Hear; 1996 Oct; 17(5):361-73. PubMed ID: 8909884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults.
    Keefe DH; Hunter LL; Feeney MP; Fitzpatrick DF
    J Acoust Soc Am; 2015 Dec; 138(6):3625-53. PubMed ID: 26723319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic impedance in the human ear canal.
    Kringlebotn M
    Scand Audiol; 1994; 23(1):65-71. PubMed ID: 8184285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of acoustic impedance and reflectance in the human ear canal.
    Voss SE; Allen JB
    J Acoust Soc Am; 1994 Jan; 95(1):372-84. PubMed ID: 8120248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal.
    Keefe DH; Bulen JC; Campbell SL; Burns EM
    J Acoust Soc Am; 1994 Jan; 95(1):355-71. PubMed ID: 8120247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sweep frequency impedance measures in young infants: developmental characteristics from birth to 6 months.
    Aithal V; Kei J; Driscoll C; Murakoshi M; Wada H
    Int J Audiol; 2017 Mar; 56(3):154-163. PubMed ID: 27780372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic intensity, impedance and reflection coefficient in the human ear canal.
    Farmer-Fedor BL; Rabbitt RD
    J Acoust Soc Am; 2002 Aug; 112(2):600-20. PubMed ID: 12186041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound-power collection by the auditory periphery of the mongolian gerbil Meriones unguiculatus. II. External-ear radiation impedance and power collection.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1996 May; 99(5):3044-63. PubMed ID: 8642116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of the acoustic input impedance of cat ears: 10 Hz to 20 kHz.
    Lynch TJ; Peake WT; Rosowski JJ
    J Acoust Soc Am; 1994 Oct; 96(4):2184-209. PubMed ID: 7963032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wideband reflectance tympanometry in normal adults.
    Margolis RH; Saly GL; Keefe DH
    J Acoust Soc Am; 1999 Jul; 106(1):265-80. PubMed ID: 10420621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1992 Jul; 92(1):157-77. PubMed ID: 1512321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal development of wideband reflectance tympanometry in normal and at-risk infants.
    Hunter LL; Keefe DH; Feeney MP; Fitzpatrick DF; Lin L
    Hear Res; 2016 Oct; 340():3-14. PubMed ID: 26712451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal changes in dynamic characteristics of neonatal external and middle ears.
    Kanka N; Murakoshi M; Hamanishi S; Kakuta R; Matsutani S; Kobayashi T; Wada H
    Int J Pediatr Otorhinolaryngol; 2020 Jul; 134():110061. PubMed ID: 32387706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wideband reflectance in Down syndrome.
    Soares JC; Urosas JG; Calarga KS; Pichelli TS; Limongi SC; Shahnaz N; Carvallo RM
    Int J Pediatr Otorhinolaryngol; 2016 Aug; 87():164-71. PubMed ID: 27368466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory.
    Piskorski P; Keefe DH; Simmons JL; Gorga MP
    J Acoust Soc Am; 1999 Mar; 105(3):1749-64. PubMed ID: 10089599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External- and middle-ear factors affecting evoked otoacoustic emissions in neonates.
    Thornton AR; Kimm L; Kennedy CR; Cafarelli-Dees D
    Br J Audiol; 1993 Oct; 27(5):319-27. PubMed ID: 8205077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ear-canal wideband acoustic transfer functions of adults and two- to nine-month-old infants.
    Werner LA; Levi EC; Keefe DH
    Ear Hear; 2010 Oct; 31(5):587-98. PubMed ID: 20517155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple frequency tympanometry: effects of ear canal volume compensation on static acoustic admittance and estimates of middle ear resonance.
    Shanks JE; Wilson RH; Cambron NK
    J Speech Hear Res; 1993 Feb; 36(1):178-85. PubMed ID: 8450657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.