These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8270741)

  • 1. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Harrison WA; Burns EM
    J Acoust Soc Am; 1993 Nov; 94(5):2649-58. PubMed ID: 8270741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear.
    Mott JB; Norton SJ; Neely ST; Warr WB
    Hear Res; 1989 Apr; 38(3):229-42. PubMed ID: 2708165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions and hearing threshold fine structure.
    Dewey JB; Lee J; Dhar S
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):897-914. PubMed ID: 25245498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distortion product otoacoustic emissions created through the interaction of spontaneous otoacoustic emissions and externally generated tones.
    Norrix LW; Glattke TJ
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):945-55. PubMed ID: 8759948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contralateral Suppression of Spontaneous Otoacoustic Emissions in Individuals With Auditory Neuropathy Spectrum Disorder.
    Prabhu P; Joshi K; Muhammad JK; Nisha KV
    J Int Adv Otol; 2021 Jul; 17(4):325-329. PubMed ID: 34309553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones.
    Long G
    Hear Res; 1998 May; 119(1-2):49-60. PubMed ID: 9641318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Zhao W; Dhar S
    J Assoc Res Otolaryngol; 2010 Mar; 11(1):53-67. PubMed ID: 19798532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise.
    Büki B; Wit HP; Avan P
    Brain Res; 2000 Jan; 852(1):140-50. PubMed ID: 10661505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous otoacoustic emission recordings during contralateral pure-tone activation of medial olivocochlear reflex.
    Bulut E; Öztürk L
    Physiol Int; 2017 Jun; 104(2):171-182. PubMed ID: 28648121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba).
    Engler S; Köppl C; Manley GA; de Kleine E; van Dijk P
    Hear Res; 2020 Jan; 385():107835. PubMed ID: 31710933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of spontaneous otoacoustic emissions on distortion product otoacoustic emission amplitudes.
    Ozturan O; Oysu C
    Hear Res; 1999 Jan; 127(1-2):129-36. PubMed ID: 9925024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Changes in human spontaneous otoacoustic emissions with contralateral acoustic stimulation].
    Kashiwamura M; Satoh N; Fukuda S; Kawanami M; Chida E; Inuyama Y
    Nihon Jibiinkoka Gakkai Kaiho; 1993 Jun; 96(6):922-30. PubMed ID: 8345399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions.
    Goodman SS; Keefe DH
    J Assoc Res Otolaryngol; 2006 Jun; 7(2):125-39. PubMed ID: 16568366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distortion product otoacoustic emission contralateral suppression functions obtained with ramped stimuli.
    Purcell DW; Butler BE; Saunders TJ; Allen P
    J Acoust Soc Am; 2008 Oct; 124(4):2133-48. PubMed ID: 19062854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gender differences in contralateral suppression of spontaneous otoacoustic emissions in individuals with auditory neuropathy spectrum disorders.
    Nisha KV; Loganathan MK; Prabhu P
    Eur Arch Otorhinolaryngol; 2023 Mar; 280(3):1493-1499. PubMed ID: 36374345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent Acoustic Activation of the Medial Olivocochlear System Modifies the After-Effects of Intense Low-Frequency Sound on the Human Inner Ear.
    Kugler K; Wiegrebe L; Gürkov R; Krause E; Drexl M
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):713-25. PubMed ID: 26264256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of contralateral acoustic stimulation on distortion-product and spontaneous otoacoustic emissions in the barn owl.
    Manley GA; Taschenberger G; Oeckinghaus H
    Hear Res; 1999 Dec; 138(1-2):1-12. PubMed ID: 10575110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans.
    Baiduc RR; Lee J; Dhar S
    J Acoust Soc Am; 2014 Jan; 135(1):300-14. PubMed ID: 24437770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some effects of tonal fatiguing on spontaneous and distortion-product otoacoustic emissions.
    Cianfrone G; Mattia M; Cervellini M; Musacchio A
    Br J Audiol; 1993 Apr; 27(2):123-30. PubMed ID: 8220278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual correlates of neural plasticity related to spontaneous otoacoustic emissions?
    Norena A; Micheyl C; Durrant J; Chéry-Croze S; Collet L
    Hear Res; 2002 Sep; 171(1-2):66-71. PubMed ID: 12204350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.